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Abstract

In repeated games with Nash equilibria in mixed strategies, players
optimize by playing randomly. Players are boundedly rational in their
randomization efforts. Arguably, they have no internal randomization
facility and they fashion external randomization aids from the envi-
ronment. By conditioning on past play, boundedly rational players ex-
hibit a pattern. The pattern is characterized by cognitive limitations
variously called local representativeness, the law of small numbers or
the gambler’s fallacy. I find one such pattern—balance then runs—in
re-analysis of existing data for matching pennies experiments. While
players and play are heterogeneous, the pattern makes prediction plau-
sible. I implement prediction with a non-linear autoregression. Model
1 is a statistically and substantively significant tool for predicting be-
havior in matching pennies. There is evidence for two other behavioral
models, both of which require some sort of sophistication—including
a model of the opponent as boundedly rational.
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All you know about luck for certain is that it’s bound to

change. — Bret Harte, “The Outcasts of Poker Flat,” in The

Luck of Roaring Camp and Other Stories

Economists believe that in repeated games with Nash equilibria in mixed

strategies rational players should randomize. A matching pennies player

should choose heads with 50% probability, and her choice should be inde-

pendent of everything in her opponent’s information set. Do players act

according to the theory? Do they act randomly?

Here are two alternatives: (1) learning theory and (2) bounded rationality.

While learning theory has its successes, Mookherjee & Sopher (1994)(M&S)

found little learning behavior in the classic repeated fixed pairs matching

pennies treatment. (The game and their experiment are described in section

3.) Subsequent learning theory tests on their data also explain little, Salmon

(2002).

Does bounded rationality prevent players from randomizing? One form

of bounded rationality in randomization, sometimes labelled the gambler’s

fallacy, generates negative autocorrelation. M&S found modest evidence of

negative autocorrelation in own past play.

Another form of bounded rationality in randomization generally is called

local representativeness. Local representativeness implies some conditions

are perceived to be more random than others when in theory they are all

equally likely. Rapoport & Budescu (R&B)(1992) make local representative-

ness operational by defining it in terms of a lexicographic weak ordering.

The ordering is based on balance then runs (see section 1). Balance then

runs may be picked up when testing other models, particularly the gambler’s
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fallacy or learning theories. But balance then runs is non-linear over time,

unlike alternatives.

I make three claims. Claim #1: The balance-then-runs local representa-

tiveness pattern (“representativeness”) is statistically significant in the M&S

data.

Accepting Shachat’s finding (Shachat (2002)) that play is heterogeneous,

I develop four models to predict behavior in the game. Each model has two

steps: (1) steps one filters prior play for a pattern, and (2) step two generates

a prediction. Claim #2: Model 1, representativeness, is a statistically and

substantively significant predictor of play. Model 1 is a purely defensive

strategy, a flawed attempt to play randomly.

Claim #3: Players exploit boundedly rational play in opponents. Counter

representativeness is defined as playing the strategy counter to representa-

tiveness. Model 2, counter representativeness, is significant in R&B data.

Model 4 best responds to players behaving as in Model 2. Model 4 is also

significant in R&B data. Models 2 and 4 are different models of player so-

phistication. In both, players respond to some notion of their opponent’s

behavior. In Model 2 it is defense—an attempt to be inscrutable. In Model

4 it is offense—an attempt to outguess the opponent. Both are efforts to do

better than Nash equilibrium would allow.

The next section describes representativeness, how to look for it, and

the results in the M&S data. In section 2, predictive models are developed

and tested in M&S and R&B data. The discussion ties this work to the

existing literature; leads to thoughts about random variables and how we

mimic them—and how we respond to others attempts; describes the curse of
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dimensionality in the information set and data mining; and offers extensions.

Conclusions follow.

1 Representativeness in randomization: What

it is and how to spot it.

The broad sweep of cognitive psychology is a trend away from finding and

bemoaning irrationality, toward finding rational explanations for what ap-

pears on first glance to be irrational behavior, McKenzie (2002). One ele-

ment of the older “heuristics and biases” literature is the “representativeness

heuristic”—an error that arises from the difference between the character of

populations and small random samples of them.

Kahneman and Tversky (1972) asked participants which of

two hospitals would have more days of delivering more than 60%

boys. * * * Although the small hospital would be more likely to

deliver more than 60% boys on a given day (due to sampling varia-

tion), participants tended to respond that the two hospitals were

equally likely to do so. Kahneman and Tversky (1972) argued

that representativeness accounted for the finding: Participants

were assessing the similarity between the sample and the 50/50

generating process, which is equivalent for the two hospitals —

McKenzie (2002).

The representativeness heuristic leads to a variety of cognitive errors. Lo-

cal representativeness is one species of bounded rationality in randomization.

Several overlapping concepts formalize local representativeness: negative au-
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tocorrelation, balance, runs, and anti-symmetry. I emphasize one form based

on balance then runs, which implies some negative autocorrelation, but does

not encompass anti-symmetry. (For more see section 3.)

In matching pennies truly random players generate every possible path

with equal likelihood. The path HHHHH is as likely as any other 5-step

path. A boundedly rational player may see different paths as having different

likelihoods. A path with a proportion of heads and tails near 50/50 may be

perceived to be more random than one with a more extreme proportion.

So HTHTH, a path with 60% heads, may be perceived more random than

HHHTH, with 80% heads. Conditional on the same proportions, paths with

more runs maybe perceived more random. (For more on whether perceived

randomness is monotonic in runs see section 3.3.) So HTHTH, having 60%

heads and 5 runs, may be perceived more random than HHHTT, having 60%

heads and 2 runs. Accordingly, having seen HHHTT, a player might think

T next, generating THHHTT, (50 % heads) is more random than H next,

generating HHHHTT (67 % heads). In sum, my model of representativeness

has this intuition: Paths with a balance of heads and tails are perceived more

random than unbalanced paths, and conditional on balance, paths with more

runs are perceived more likely than those with fewer runs.

To make representativeness econometrically operational, more rigor is

necessary.

An l-step path Al is a sequence of l binary digits. For concreteness, digits

are coded as “H” or “T.” One example of a 5-step path is

A5 = THTHH.

The fifth (oldest) step in A5 is a5 = H.
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Let Al be a path, AH
l be the number of heads in path Al, and AT

l be the

number of tails. Define the balance of a path,

bal(Al) = max(AH
l , AT

l ).

The balance rule is the condition:

bal(Al) > bal(Bl) ⇒ P [Bl] > P [Al].

In words, if one path Al has more of either outcome than path Bl has of either

outcome, then Bl is perceived more random. For example A4 = HHHH is

perceived less random than B4 = HTHT because the A4 has 4 elements in its

maximal category, and B4 has only two. P [·] is a weak ordering implementing

a subjective sense of probability; it need not be a probability measure.

Let runs(Al) be the number of runs in Al, where a run is counted if

ai 6= ai−1, i ≤ l.

runs(Al) =
l∑

i=1

I(ai 6= ai−1)

where I() is the indicator function—equal to one if true, and zero otherwise—

and a1 6= a0 by definition. The runs rule is

run[Al] > runs[Bl] ⇒ P [Al] > P [Bl].

Another example: A4 = HTHT is perceived more random than B4 = HHTT

because A4 has 4 runs, while B4 has two.

A path Al is more representative than Bl if it is more balanced or equally-

balanced but has more runs.

rep(Al) > rep(Bl) ⇔ bal(Al) < bal(Bl) or

bal(Al) = bal(Bl) and runs(Al) > runs(Bl).
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A representativeness player will perceive the representative path as more

random and so play it. Then, over the course of many repetitions, the distri-

bution of the player’s empirical path frequencies will reflect representative-

ness: paths perceived to be more random will be played more often. Repre-

sentativeness implies a weak ordering of path frequencies. “Weak” because

some paths are equally representative. “Ordering” because representative-

ness orders path frequencies but does not measure them. Representativeness

offers no quantitative insight into how frequent one path should be, either

absolutely or relative to other paths: There is no cardinal information.

To test empirical path frequencies against the representativeness hypoth-

esis, choose a rank correlation test. Two rank correlation statistics from

non-parametric statistics apply, Kendall’s τ and Spearman’s ρ. Except as

noted, all calculations are adjusted for ties. Sprent (1993) gives formulas

and critical values.

The usual critical values depend on independent observations. Non-

overlapping paths of play are independent too, but there are too few of

them in the M&S data set to make a meaningful statistical test. Instead, I

overlapped paths, and simulated critical values. Ten thousand sets of M&S

data (800 random data points each) were created pseudo-randomly, paths

extracted and critical values obtained from empirical quantiles of the rank

correlation between frequencies of simulated paths and the representative

weak ordering of paths. For example, for path length l = 5, 5% of the

random data sets has Spearman’s ρ > 0.71465. The critical value given in-

dependence is 0.294. The values differ because of dependence in overlapping

paths, but may also be a feature of the specific finite sample, 20 observations
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Table 1: Representativeness in M&S Data

Path Lengths l Kendall’s τ Spearman’s ρ
3 0.34 0.62
4 0.64* 0.73*
5 0.47* 0.60*
6 0.38* 0.49*
7 0.39*
8 0.32**
9 0.24**

* 10%, ** 5%

of 40 rounds of play.

The alternative hypothesis is positive rank correlation, so I use a one-sided

test. Row players win with matches; column players with mismatches. When

considering column players, I reframe the column player data by labelling H

as T and vice versa, so row and column players may be treated equivalently

as match-seekers.

Rank correlations between empirical and representative path frequencies

from the M&S data are reported in Table 1. There are no reference values

for paths shorter than l = 3 because there are no more than four possible

paths to rank when their lengths are so short. For long paths, the empirical

path frequencies in the M&S data are arguably too small for a compelling

diagnostic test: There are 29 = 512 possible paths for length l = 9. Expected

path frequency for path length l = 9 is about 1.2. It makes sense that if there

is representativeness at length l = x it would have an echo in l = x + 1 since

the paths differ only in the x + 1’th element. So the eleven tests reported

are not independent, but neither are they redundant; they are mutually
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supportive in that they all have the right sign and similar levels of statistical

significance.

Having found evidence of a pattern, can we predict from it?

2 Prediction in Matching Pennies

2.1 Econometric Model

Let Ri,t be the decision of row player i at time t, where Ri,t ∈ {−1, 1}. In the

M&S data, as reframed, there are 20 pairs of players, and i uniquely identifies

a pair of players. An opponent’s choice is Cj,t ∈ {−1, 1}, j ∈ {1, . . . 20}, i 6= j.

A general functional form for prediction of Ri,t is

Ri,t = f(Ri,t−k, Cj,t−k, X
′
iγ, εi,t),

i = 1, . . . 20, j ∈ {1, . . . 20}, j 6= i, k = 1, . . . t− 1, t = 1, . . . T.

Sets of variables {Ri,t−k} and {Cj,t−k} are Ri’s information set. Player i may

recall her prior play {Ri,t−k}, and her opponent’s prior play, {Cj,t−k}. Xi is

fixed effects, a vector of dummy variables, all set to zero except that the i’th

is set to one. γ is a vector of coefficients on the dummy variables. εi,t is an

error term.

The partitioning scheme is based on the idea that Ri will base her play

on her own past play, or her opponent’s, but not both at the same time. For

more on the tradeoff between this strong assumption and tractability, see

section 3.3.

First consider defense, in which Ri conditions only on her own past play:

Ri,t = f(Ri,t−k, X
′
iγ, εi,t),

i = 1, . . . 20, k = 1, . . . t− 1, t = 1, . . . T.
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Since play is highly heterogeneous over players and play, apply a filter to

sift predictable play from data for which we have no prediction. If we have

no prediction, R̂i,t = 0, (R̂i,t = 1/2 for logit models). The filter takes the

form of an indicator function:

I(ρl,w > x).

I(·) is one if the inequality holds, zero otherwise. The filter introduces a

number of free parameters which could facilitate data mining. I have fixed

the parameters, sometimes arbitrarily, to minimize this hazard. All are varied

later as robustness checks.

The function ρ(·) is Spearman’s ρ with tie adjustment. There are three

other tests of rank correlation, ρ̂(·), Spearman’s ρ without tie adjustment, as

well as τ(·) and τ̂(·), Kendall’s τ with and without tie adjustment. Spear-

man’s ρ is the baseline statistic.

The rank correlation functions take two parameters, the path length l

and the window w. Path lengths up to l = 9 are used. The test of repre-

sentativeness is balance then runs, but for odd lengths l, there are no ties in

balance, so representativeness is measured by balance alone.

The parameter w specifies the upper bound on how many paths are to be

considered. For example, w = 50 specifies that the rank correlation between

last fifty overlapping paths and the representativeness weak ordering is to be

calculated. In the M&S data, with T=40, it is not obvious that w should be

less than all the paths in the player’s information set. The baseline value for

w is w = 50. This choice calls for using all prior paths in the M&S data. This

choice biases against useful filtering in the M&S data, hence against finding

significance, when a player changes strategy.
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I need a threshold number of paths on which to calculate rank correlations

before predictions are practical. Let w̃ be this parameter. It is fixed at l +1,

its theoretical minimum. This choice also biases against finding significance

because correlations will be calculated even when there is only one path to

compare to the representativeness distribution.

Next, x is a trigger value. If rank correlation exceeds x, conclude that

behavior follows representativeness and predict the next choice. Set x at the

rank correlation value that coincides with a 80 % probability of representa-

tiveness, where that 80 % value is from the simulated critical values derived

in section 1. For path length l = 5 the 80 % value is ρ = 0.422. The filter

applies to the player whose history is in the information set. Here it is own

play; for Models 3 and 4 below, it changes.

Let ˆrepl(Ri,t−1) be the representativeness prediction. Using R’s immedi-

ately preceding path of length l, compare the representativeness of choosing

1 and of choosing −1 and predict the one which is more representative.

The specification becomes:

Ri,t = f(I(ρl,w > x) ˆrepl(Ri,t−1)β, X ′
iγ, εi,t),

i = 1, . . . 20, t = ŵ, . . . T.

Ri,t is a limited dependent variable, suggesting use of a probit or logit func-

tional form, among others. I use logit, with reference to OLS as a check.

Ri,t = fL(I(ρl,w > x) ˆrepl(Ri,t−1)β + X ′
iγ + εi,t), (1)

i = 1, . . . 20, t = ŵ, . . . T,

where

fL(x) =
ex

1 + ex
.
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The parameter of interest is β. β will be positive if the representative

choice on filtered data is a significant predictor of Ri,t. Equation (1) is Model

1, representativeness.

Define counter representativeness as negative rank correlation, and pre-

dict counter-representative players by guessing that their choices will con-

tinue to be counter representative. Hence model 2:

Ri,t = fL (I(ρl,w < −x)(− ˆrepl(Ri,t−1))β + X ′
iγ + εi,t) , (2)

i = 1, . . . 20, t = w̃, . . . T.

Next, consider offensive partitions. A player may detect representativeness

in her opponent—I assume she would do it exactly as I do—and best respond

to it. This is Model 3:

Ri,t = fL (I(ρl,w > x) ˆrepl(Cj,t−1)β + X ′
iγ + εi,t) , (3)

i = 1, . . . 20, j ∈ {1, . . . 20}, i 6= j, t = w̃, . . . T.

Finally, a player detecting counter representativeness in her opponent may

best respond to that. This is Model 4:

Ri,t = fL (I(ρl,t−l−1 < −x)(− ˆrepl(Cj,t−1))β + X ′
iγ + εi,t) , (4)

i = 1, . . . 20, j ∈ {1, . . . 20}, i 6= j, t = w̃, . . . T.

One can linearly combine any permutation of these models and get a new
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model. The most general is the portmanteau model:

Ri,t = fL(I(ρl,t−l−1 > x) ˆrepl(Ri,t−1)β1

+ I(ρl,t−l−1 < −x)(− ˆrepl(Ri,t−1))β2

+ I(ρl,t−l−1 > x) ˆrepl(Cj,t−1)β3

+ I(ρl,t−l−1 < −x)(− ˆrepl(Cj,t−1))β4

+ X ′
iγ + εi,t), (5)

i = 1, . . . 20, j ∈ {1, . . . 20}, j 6= i, t = w̃, . . . T.

2.2 M&S Data

The baseline logit specification is defined as follows: Path length is l = 5.

The filter omits observations for which the probability of representativeness

is less than 80%, ρ < 0.422, calculated on all five-step paths up to time

t. A constant is included. The results for Model 1, baseline specification

are Table 2, Column 1. 115 observations spread among 8 of the 20 players

passed the filter. In the absence of a consensus measure of goodness-of-fit

for logit models, (see, Greene (2000), p. 831) I use conditional probability

of successful prediction. It has a transparent intuition: 50% is worthless,

100% is perfect. The representativeness prediction was correct 37 times more

than it was incorrect; correct 66.1% of the time. The z-score on β̂1 is 3.38,

probability 0.0004. In this regression β̂1 = 1.33. This coefficient is not

reported hereafter since it is its sign and statistical significance that matters.

Pair fixed effects are shown for the baseline model, Table 2, Column 3.

The Model 1 β coefficient is slightly more significant, an F test for the fixed

effects as a whole was not significant; for 2 players out of 20 fixed effects were
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Table 2: M&S Data, Baseline, Portmanteau and Fixed Effects

Specification (1) (2) (3)
Model 1 1,2,3,4 1
Path Length l 5 5 5
Filter ρ5,t > 0.422 ρ5,t > 0.422 ρ5,t > 0.422

80% 80% 80%
w̃ 6 6 6
Fixed Effects No No Yes
Function Logit Logit Logit
Results (1) (2) (3)
Predictions 115 271 115
Net wins 37 53 37
Percent won 66.1 59.8 65.8
Pairs used 8 18 8

β̂1 z-score 3.38 3.42 3.57
Probability 0.0004 0.0003 0.0002

β̂2 z-score 0.94

β̂3 z-score 0.46

β̂4 z-score 1.64
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significant at the 90% level, consistent with insignificance.

The other models fare less well. The portmanteau model is characteristic,

Table 2, Column 2. Models 2 and 3 are not statistically significant either

here or separately. Model 4 is barely statistically significant both in the

portmanteau model and when run alone at the 95% level, but the result is

not robust to varying path length or the statistical measure.

Although there is little evidence of Models 3 and 4—players best re-

sponding to representativeness or counter representativeness—there is some

evidence of players reacting to their opponents in a simpler way. Table 3,

Column 5 shows Model 1, representativeness in own play with lags of op-

ponent’s play. No results are reported for success measures because I have

no theory for how to combine representativeness with lags. Opponent’s lags

one and two are not significant alone (M&S have this result), but lags one

and two are statistically significant with opposite signs when combined with

Model 1, representativeness, in own play. The results are robust to dropping

opponent’s lags 3 and 4, which were not significant. Opponent’s lags one

and two remain significant at approximately the 95% level with variations in

trigger level in the representativeness filter and variations in path length.

2.3 Robustness

This subsection is support for the Model 1 baseline specification, Table 2,

Column 1. Though some specifications fit better in some respects, and others

are worse, the baseline specification is the one on which I settle. There are

three measures of the quality of predictions: (1) net successes, (2) probability

of success given a prediction and (3) z-score.
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Table 3: M&S Data, Baseline, Linear and Sophistication Effects

Specification (1) (4) (5)
Model 1 1 1 + lags
Path Length l 5 5 5
Filter ρ5,t > 0.422 ρ5,t > 0.422 ρ5,t > 0.422

80% 80% 80%
w̃ 6 6 6
Fixed Effects No No No
Function Logit Linear Logit
Results (1) (4) (5)
Predictions 115 115
Net wins 37 37
Percent won 66.1 66.1
Pairs used 8 8

β̂1 z-score 3.38 3.25

β̂1 t-stat 3.77
Probability 0.0004 0.00008 0.0005

Ĉt−1,j z-score 1.66

Ĉt−2,j z-score -1.52

Ĉt−3,j z-score 0.05

Ĉt−4,j z-score 0.11
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Table 4: M&S Path Length l Variations
Panel A: Short Paths

Specification (1) (2) (3) (4)
Model 1 1 1 1
Path Length l 3 4 5 6
Filter ρ3,t > 0.948 ρ4,t > 0.491 ρ5,t > 0.422 ρ6,t > 0.290
Results (1) (2) (3) (4)
Predictions 19 129 115 143
Net wins 11 29 37 29
Percent won 78.9 61.2 66.1 60.1
Pairs used 9 8 8

β̂1 z-score 2.33 2.52 3.38 2.41
Probability 0.01 0.006 0.0003 0.008

Panel B: Long Path Lengths

Specification (5) (6) (7)
Model 1 1 1
Path Length l 7 8 9
Filter ρ7,t > 0.223 ρ8,t > 0.156 ρ9,t > 0.121
Results (5) (6) (7)
Predictions 143 137 116
Net wins 39 25 24
Percent won 63.6 59.1 60.3
Pairs used 8 9 8

β̂1 z-score 3.22 2.12 2.22
Probability 0.0006 0.017 0.013
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Consider varying the path length, with trigger level set at 80%. This is

summarized in Table 4. The results are statistically significant for all paths

sizes from l = 3 to l = 9. Net successes range from 11 to 39. Success rates

vary from 59.1% to 78.9%. Odd length paths do better. The first and second

best on all three of my ranking measures are odd-length paths. On the other

hand, path length l = 2 was not statistically significant (w̃ was set to 4 to

get it to run).

Consider varying the trigger level x. Net successes vary from 14 (no trig-

ger) to 43 (x = 0.20) and then fall to 16 (x = 0.80). The probability of a

success given a prediction is only 51% with no filter, but increases smoothly

to 77% for x = 0.80. The z-score varies from 0.54 (no trigger) to 3.87

(x = 0.50) and then falls to 2.76 (x = 0.80). In this dimension, one can

obtain non-significant results for x < 0.20. This is evidence that a filter is

necessary.

Consider varying the rank correlation statistic. There are four to choose

from. In the baseline specification they are all significant; Spearman with no

tie adjustment is worst, with z-score 2.90. Win rates range from 60-75%; net

wins 21-41. No one measure dominates.

Similar robustness tests were conducted on increasing ŵ from its mini-

mum value or decreasing w so that it was significantly constraining. Increas-

ing ŵ does not matter unless it begins to decrease the amount of available

data significantly. In the baseline specification with ŵ = 15 the z-score for

the representativeness variable was 3.20. Decreasing w dramatically also has

little effect. For the baseline specification with w = 9, the z-score is 3.34.

For even smaller windows, the results begin to deteriorate.
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The favorable results for Model 1, representativeness, are robust. Any

path length anywhere near l = 5 works. Trigger values for x well below and

above the baseline level work. Any of four measures of rank correlation work.

Varying the beginning point ŵ and the window w make little difference. Fixed

effects were unimportant—perhaps the filter successfully supplants them.

OLS results are about the same are logit. Model 1 stands out relative to the

other models. The number of its predictions and z-scores were consistently

larger than that of other models.

Also of note: The path length l plus about 10 rounds is sufficient to

generate optimal predictions. And the best fits are for l = 5 or l = 7. So

Model 1 does not require lots of data. This indirectly suggests that Rabin’s

N (see discussion) is roughly 16.

2.4 Simulation

As another check on hidden dependencies due to overlapping paths, for ex-

ample, or data mining, I simulated a random data set and ran in through

paces similar to those for the M&S data. I tried 10 regressions with differ-

ent path lengths, triggers, statistical measures, and windows, all for Model

1, representativeness. The regression with the best fit had probability 11%,

though the sign was wrong.

2.5 R&B Data

After completing work on the M&S data, I turned to the R&B data. R&B is

another matching pennies experiment conducted in a different country with

the experimental protocols of another discipline: psychology. Details are
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Table 5: R&B Data, Path Length l = 5

Specification (1) (2) (3) (4)
Model 1 2 3 4
Path Length l 5 5 5 5
Filter ρ5,50 > 0.422 ρ5,50 > 0.422 ρ5,50 > 0.422 ρ5,50 > 0.422
Results (1) (2) (3) (4)
Predictions 3558 1158 3630 1129
Net wins 568 54 -84 85
Percent won 58.0 52.3 48.8 53.8

β̂ z-score 9.46 1.56 -1.44 2.46
Probability 0.0000000 0.058 0.07 0.007

given in section 3. The same baseline parameters should work, except for the

trigger value x, whose interpretation is specific to the M&S sample size and

number of rounds. Nevertheless, for consistency, I retained the same trigger

values.

Results for the Model 1 baseline specification are given in Table 5, Column

1. This is a larger data set; 3,558 predictions were made with 568 net wins

(58%) and z-score 9.46, probability 0.0000000. Models 2, 3 and 4 are the next

three columns. Model 2, counter representativeness, just misses statistical

significance in the baseline model. Model 3, best response to representative-

ness, is not significant and has the wrong sign. Model 4, best response to

counter representativeness is statistically significant, but not nearly so salient

as Model 1.

The R&B game is almost four times longer than the M&S game (for those

who went the distance). Perhaps in a longer game, longer paths matter. And

a longer game with more pairs supplies more data. Longer paths means more
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possible paths, and allowing the path space to ramify is more promising in a

larger data set. Table 6, Panel A is the baseline specification for the four mod-

els, but with path length l = 7. Model 1 has equally strong results. However,

the borderline results for Model 2 are improved. With length l = 7, Model

2 counter representativeness is less prominent than Model 1 representative-

ness, but it is clearly present. Model 3, best response to representativeness,

retains the wrong sign and remains insignificant. Model 4, best response to

counter representativeness remains significant.

The three significant models are combined in Table 6, Panel B, Column 1.

Little changes, suggesting the models are largely independent of one another.

Column 2 adds the first lag of opponent’s play. The first lag is significant

and reduces but does not eliminate the significance of Model 4. Longer lags

were insignificant.

Table 7 repeats the exercise for path length l = 9. Model 1 is as before,

although it makes about 20% more predictions and gets them right with al-

most the same probability as with l = 5. Model 2 counter representativeness

is now also extremely significant. A subroutine in Gauss, QNewton Version

5.0.14 could not solve Model 3 because a matrix was complex—perhaps con-

sistent with its being insignificant. Model 4 is weaker than with l = 7, though

still significant.

2.6 Summary of Matching Pennies Results.

Some play is consistent with the null hypothesis of randomness; however,

some play is predictable. Model 1 was able to pick up on patterns and

forecast from them. In many R&B specifications, when it guessed, it guessed
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Table 6: R&B Data, Path Length l = 7
Panel A:

Specification (1) (2) (3) (4)
Model 1 2 3 4
Path Length l 7 7 7 7
Filter ρ7,50 > 0.223 ρ7,50 > 0.223 ρ7,50 > 0.223 ρ7,50 > 0.223
Results (1) (2) (3) (4)
Predictions 4018 1194 4070 1138
Net wins 632 142 -60 68
Percent won 57.9 55.9 49.3 53.0

β̂ z-score 9.92 3.98 -0.95 2.01
Probability 0.0000000 0.00003 0.17 0.02

Panel B

Specification (1) (2)
Model 1,2 4 1,2,4,lag
Path Length l 7 7
Filter ρ7,50 > 0.223 ρ7,50 > 0.223
Results (1) (2)
Predictions 5576
Net wins 806
Percent won 57.2

β̂1 z-score 9.97 9.96

β̂2 z-score 4.00 3.97

β̂4 z-score 2.21 1.83

Ĉt−1,j z-score -3.11
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Table 7: R&B Data, Path Length l = 9

Specification (1) (2) (3)
Model 1 2 4
Path Length l 9 9 9
Filter ρ9,50 > 0.121 ρ9,50 > 0.121 ρ9,50 > 0.121
Results (1) (2) (3)
Predictions 4210 1147 1067
Net wins 622 225 67
Percent won 57.4 59.8 53.1

β̂ z-score 9.54 6.48 2.02
Probability 0.0000000 0.0000000 0.02

correctly four times in seven on average, over thousands of rounds.

Model 2, based on counter representativeness, was successful in the larger

R&B data set, but not in the M&S data set. A player might apply Model 1

to her opponent’s play, detect representativeness and best respond to exploit

it, thereby becoming predictable in turn. This is Model 3. Model 3 was

an unexpected failure. Model 4, a best response to opponents using Model

2, was an unexpected success in the R&B data set given failure of Model 3.

Overall, the strongest results obtained were for path length l = 7 in the R&B

data, Table 6 and the baseline specification path length l = 5 in the M&S

data, Table 2, Column (1).

3 Discussion

3.1 Links to the Literature

In matching pennies Row and Column choose a binary variable at the same

time; for concreteness, suppose they choose heads or tails. If they match—
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both heads or both tails—then Row wins one unit and Column wins nothing.

If they mismatch, then Column wins one unit and Row wins nothing. That’s

one round of the stage game, Figure 1. In experiments there are numerous

stages between the same players.

The school yard version of matching pennies is a zero sum game. In

the economics experiments the game is structured as a positive sum game.

This structure avoids the possible impact of different preferences for gains

and losses. Players are usually given an endowment, and it also avoids the

risk that one player might lose his entire endowment. On the other hand,

psychologists feel such possibilities add spice to the mix, Rapoport & Budescu

(1992). In R&B 45 pairs of undergraduates from the University of Haifa

played 150 rounds with an initial endowment of 20 New Israeli Shekels. Some

lost their endowment and the game terminated in less than 150 rounds. R&B

also experimented with two other conditions, which are not important here

because they involved no strategic interaction. M&S players (Moohkerjee

& Sopher (1994)) were masters students in economics at the University of

Delhi. Ten pairs of players played 40 rounds of two treatments. In treatment

1 players did not know the payoff matrix. Only the second treatment is of

interest here. Treatment two was the standard matching pennies game. The

payoff matrix was common knowledge and payoffs were announced after each

round. I thank both Barry Sopher and David Budescu for their data.

Nash equilibrium captures rational behavior in matching pennies. Nash

equilibrium in this game is intuitively easy: Row plays heads with i.i.d.

Bernoulli probability 1/2. Column does the same. If play is not independent,

then the other player should be able to exploit the information contained in

24



H T
0 1

H
1 0

1 0
T

0 1

Figure 1: Matching Pennies Normal Form Game

past play. If it is not Bernoulli probability 1/2, then the other player should

be able to exploit the difference by always best responding to the more likely

outcome. M&S apply a number of econometric tests in cross sections and

time series to show that behavior in their experiment is largely consistent

with randomness and Nash equilibrium behavior.

The core idea of learning theory is that players experiment with differ-

ent strategies, observe the results and then modify their behavior, Roth and

Erev (1998). Fudenberg & Levine (1998) is a recent text. Reinforcement

learning is a stimulus/response model; behavior learning entails responses

to a model of opponent behavior. The M&S treatments were designed to

distinguish reinforcement from behavior strategies experimentally, but the

design may have been contaminated by learning about the game in Treat-

ment 1. Compare Oechssler & Schipper (2003). Beyond noting that play

in their treatments differ, M&S do not find learning behavior. M&S data

have been reviewed by others. Camerer and Ho (1999) used it to test their

EWA parametric learning theory. Salmon (2001) used it to test the power of

learning theory econometrics to distinguish between different kinds of learn-
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ing behavior. Despite this effort, the evidence for learning in M&S treatment

2 is weak.

O’Neill (1987) conducted a slightly more complicated game experiment.

There were several alternatives, and one had larger payoff implications than

the others. O’Neill found little evidence of play inconsistent with Nash equi-

librium. Brown & Rosenthal (1990) re-analyzed O’Neill’s data and found play

strikingly inconsistent with randomization. O’Neill (1991) criticized their ap-

proach saying that all theories are precisely wrong and their tests did not

reject randomization in favor of an alternative. I claim that representative-

ness is a successful alternative. Further, matching pennies may be the stiffest

challenge one can place before a bounded rationality theory because play in

matching pennies is so obvious. If players can randomize anywhere, they can

randomize in matching pennies. Since they do not consistently randomize in

matching pennies, bounded rationality in randomization must be a common

phenomenon in untrained subjects lacking a randomization device.

A variety of two-person zero sum games were studied in Binmore, et al.

(2001). The pairings were reshuffled after each game, a design that obscures

sequential behavior in favor of other phenomena.

Bounded rationality in randomization or local representativeness is not

entirely new to social science, Camerer (1995). Predictability requires depen-

dence between past and future play. It has long been recognized that some

sort of dependence exists, Edwards (1961), Brown & Rosenthal (1990). The

negative autocorrelation variety of local representativeness is easy to test for

and has been found in many studies, Bar-Hillel & Wagenaar (1991). Local

representativeness has also been characterized in terms of balance, runs and
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anti-symmetry tests. The test of local representativeness I consider is in-

spired by Rapoport & Budescu (1992),(1997). In their work they go so far

as to calculate one of the rank correlation coefficients I use against a weak

ordering closely related to the one I derive from their work. Lacking critical

values for overlapping paths, they do not perform a formal test, nor do they

offer a predictive algorithm.

Balance conditional on a fixed path length is deterministic and eliminates

some paths completely. This is fine for a forecast, but it is dubious as a

model of actual behavior since some paths are seen in data that are not

representative conditional on any possible history. One might simply add an

error term, but if the point is to understand how players generate noise, is it

appropriate to just assume some noise?

If short-term memory is itself stochastic, then players’ behavior may be

representative conditional on a stochastic memory constraint. This suggests

a question about where and how the random memory constraint arises, but

at least it pushes the problem a step back. In simulations, R&B show that a

stochastic memory constraint avoids eliminating some paths. They provide

evidence that this weak ordering is robust to the length of short term memory,

and its stochastic structure. If the empirical path frequency ordering is close

to the representativeness ordering, then, they argue, representativeness is

confirmed. Even if this is wrong, if the weak ordering shows up consistently,

there is something in the data that requires explanation.

The balance test aggregates history non-linearly. Suppose, for illus-

tration, a player uses representativeness in 5-step paths, and the path is

HTTTH. Continuing with H would be perceived more random because the
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conditioning path is 40% heads. The most recent choice H had zero impact

on this decision, conditional on more remote history. On the other hand,

if the path were HHTTH, the most recent choice H determined the next

choice, T . Balance then runs to resolve ties is still more non-linear. Except

for conditioning paths of length one, balance then runs is quite distinct from

autocorrelation.

Whether it takes the form of simple autocorrelation or the linear com-

binations that underlie learning theory, there is no reason to expect players

to be as mesmerized by linearity as researchers are. Linear regressions re-

quire a lot of data and computation. Simple, but non-linear, alternatives

that may do about as well. The “take the best” heuristic championed by

Gigerenzer, et. al (1999) (“Gigerenzer”) is an example. Gigerenzer claims

that boundedly rational players may use a variety of simple rules, ranked by

importance. In performing a task, they apply the rules one at a time, and the

first to provide a definite answer is the decision. He shows that, at least in

some limited circumstances, the outcome is as good or better than the most

information-intensive and sophisticated analysis. Such rules are candidate

hypotheses of how people actually make decisions. Balance then runs is a

“take the best” rule.

Applying the balance then runs version of local representativeness, or

some other model, and finding that player strategies are indeed dependent

on history, is only the first step. A more ambitious question: Can play

be predicted sufficiently to play “offense,” and thereby win more often (in

expectation) than with defensive randomness? A theory that purports to

explain behavior should suggest an algorithm that does better than the Nash
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equilibrium against the distribution of behaviors of real players. Shachat and

Swarthout (2002) represents an initial attempt to build such an algorithm.

Model 3 is another. An experimenter playing this model against subjects

might do well.

Rabin (2002) offers an appealing variation of the balance test. He sug-

gests players view data generating processes as draws from a urn with N coins

(call them heads and tails for our purposes). If the urn started out with equal

proportions and history is HTTTH, then the urn now has more heads than

tails, so heads is perceived more likely—consistent with the balance test.

Knowing N, one can calculate probabilities and so obtain cardinal informa-

tion about perceived randomness. In a fully-developed model N may be a

parameter found econometrically. N may be of intrinsic interest as a mea-

sure of the magnitude of boundedness in rationality. What is its mean? How

does it vary over players, training, time and randomization problems? Rabin,

however, gives up something with this theoretical advance: Rabin’s model

of how we make and assess noise has noise buried within it as a primitive.

Based on N and history, he delivers a probability. Model 1 is deterministic.

Rabin’s models are significantly more general than the class of models

here. The implicit assumption here is that θ, the cross-sectional probability of

H, is known and θ = 0.5. One might allow this probability to be an unknown

random variable. Bayesian updating of θ is already in the literature, Shachat

& Swarthout (2003). Rabin allows for boundedly rational updating where

the bound arises from Row’s finite urn.

In this context, what is noise, and how might we go about making it?
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3.2 Random Variables and the Taxonomy of Types

O, what a tangled web we weave when first we practice to deceive!

— Sir Walter Scott

Late bloomers in mathematics, random variables are a bit mysterious. Con-

sider this sequence:

2653589793238462643 . . .

What is the next number in the series? The properties of this series have

been studied; the distribution of the digits is uniform, there is no standard

form of serial correlation between the digits. If you do not know the trick

it is a random variable. But if you know the trick, its easy: These are the

6’th through 25’th digits of π, and the next digit is 3. Much of what we are

tempted to treat as random is deterministic, if only we knew the trick.

Much of what is not predictable in practice is thought to be chaotic. The

evolution of chaotic systems is deterministic but unknown because param-

eters are not precisely known, and ultimately—courtesy of the Heisenberg

Uncertainty principle—can not be known with sufficient precision. We may

model chaotic systems with random variables for lack of an alternative. Aside

from quanta, are there any true random variables?

Can you make random draws by introspection, out of the unconscious

void? I can not. If there are no true random variables, it is no surprise we do

not carry a random number generator around with us in our heads. To create

apparent randomness I suggest we use external aids. The physics of coin

tosses are difficult enough that the outcomes, while perhaps deterministic,

are random for our purposes. A computer’s random number generator is
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deterministic, but obscure enough to seem unpredictable.

Consider a subject playing matching pennies defense, aiming at inscrut-

ability. Unless she’s Shachat’s subject (Shachat 2002), there is no obvious ex-

ternal randomization aid, and precious little serendipity at hand from which

to fashion it. Accordingly, she may have recourse to the only stuff around,

the history of her own play and that of her opponent. In the spirit of modern

cognitive psychology, she is doing the best she can in a claustrophobic en-

vironment, generating a series from the information available—recent play.

Given some short-term memory constraint and the sparse environment, what

else could one do? If the answer to this rhetorical question is “not much,”

then perhaps this species of bounded rationality is not so “bounded” after

all.

There need not be just one strategy, and all of them can happen in the

same experiment. Player heterogeneity is consistent with other work. When

uncertainty takes the form of the behavior of another player, players may be

classified by types, Costa-Gomes, Crawford and Broseta (2001). Most players

can be described as taking their opponent as assuming a diffuse prior over

their behavior, or (one step deeper) best responding to a diffuse prior in the

player’s behavior. A few iterate the process further, toward Nash equilibrium,

but there is evidence that it is not optimal outthink your opponent too far.

The most sophisticated type will take into account the distribution of types

among opponents and best respond to it.

Results specific to mixed strategies (Shachat (2002)) suggest the play of

players also varies. Play is sometimes deterministic, though the deterministic

choice may appear random to the opponent. At other times players use a
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randomization device if one is at hand. Play is non-stationary. There is no

evidence that non-stationarity reflects learning behavior. Perhaps the source

is changes in strategy which are intended to be a form of meta-randomness.

The player has a menu of strategies, none of which are truly random or even

very complex, but if she frequently switches among them in a complicated

fashion the result may be very difficult to decipher.

When, with Bret Harte, the only thing you are sure of is that your luck

will change, it is natural to look for snippets of history that display patterns

rather than to look player by player, much less the whole data set. The

filter used by the predictive algorithms respects player heterogeneity in two

ways: (1) it allows players to differ from one another, (2) it allows players

to vary over time. Some play exhibits the representativeness pattern (Model

1). Some shows sophisticated defense (Model 2) or offense (Model 4).

Model 2 counter representativeness is a defensive alternative to represen-

tativeness. Counter representativeness requires excessively persistent play. I

view this as a strategic response to thinking of randomness using something

like a balance test. If a balanced path is perceived random, a Model 2 player

plays counter to that to (1) be “more random” than random or (2) to fake out

the opponent. Either way, it is a defensive strategy, but a sophisticated one

in that it is conscious of an opponent’s presumed approach to the problem.

On the other hand, an offensive player is shuffling through history hunting

for a hint. She seeks patterns in seeming noise. Knowing that its source is

human is encouraging, perhaps the pattern is simple enough unearth. But

[t]here is no systematic way to get it. One person could look

at the pile of square wave tracings and see nothing but noise.
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Another might find a source of fascination there, an irrational

feeling impossible to explain to anyone who did not share it. Some

deep part of the mind, adept at noticing patterns (or the existence

of a pattern) would stir awake and frantically signal the quotidian

part of the brain to keep looking at the pile of graph paper. The

signal is dim and not always heeded, but it would instruct the

recipient to stand there for days if necessary, shuffling through

the pile of graphs like an autist, spreading them out over a large

floor, stacking them in piles according to some inscrutable system,

pencilling numbers, and letters from dead alphabets, into the

corners, cross-referencing them, finding patterns, cross-checking

them against others * * * (Neil Stephenson, Cryptonomicon, p.

117.)

until despair, psychosis or epiphany breaks the deadlock.

Suppose, like Churchill’s code breakers during World War II, she finds

a pattern. The next stage in sophistication is just to use it and assume

your opponent is not hunting for hints too. This is very much like Models

3 and 4. If Model 1 representativeness is common, and it is, one would

expect opponents to pick up on it and exploit it. However, the failure of

Model 3 is explicable if players cannot differentiate an opponent’s successful

randomization from an opponent’s representativeness. If representativeness

is a sound strategy, it must be hard to distinguish from noise.

On the other hand, counter representativeness Model 2 is playing one

strategy with higher probability than another, at least locally, and Model 4

is best responding to Model 2. The significance of Model 4 was undermined
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when the opponent’s lagged plays were added separately—and the lags were

sometimes conditionally significant. Perhaps Model 4 is a mis-specification

of a model that best responds to recent non-optimal probabilities in the

opponent. If Model 4 is more successful than Model 2, and it sometimes is,

it may mean that opponents perceive more persistence in persistent players

than actually exists.

Simple offense as in models 3 and 4 suppose that the opponent you exploit

will not see the pattern you create in exploiting his pattern. This may not

be a winning strategy.

We know everything * * * . We receive Hitler’s personal commu-

nications to his theater commanders, frequently before the com-

manders do! This knowledge is obviously a powerful tool. But

just as obviously, it cannot help us win the war unless we allow it

to change our actions. * * * [A]t which [point] information begins

to flow from us back to the Germans (ibid, p. 124).

Consider Churchill at the bombing of Coventry—when he choose not to

use information that could have saved a city lest he betray his sources and lose

access to still more vital information to come. What would a Churchill look

like? That would require a player (a “German”) whose opponent (Churchill)

had a model that found and responded to predictability—like Model 4.

Churchill’s offensive pattern would be detectible by the researcher, but at

some cost kept too subtle for his German counterpart, and that subtlety too

would be detectible. (The quotes above are from a work of fiction, and some

of those who deal in fact think the Coventry story belongs to fiction; consider

it a metaphor.)
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I four four kinds of play: random and Models 1, 2 and 4. I found neither

Churchill, nor a metaphorical German scrutinizing him. But it is early. The

experiments analyzed here were not designed with this is mind, nor are the

models subtle enough to capture such guile.

3.3 Method: The Curse of Dimensionality and Data
Mining

The patterns of play found here are non-linear. Simply grinding through

regressions is unlikely to unearth them. Designing an econometric strategy

requires a fresh look at the statistical problem.

It is obvious. Matching pennies is a very simple game. It has only four

possible outcomes per round. Predict play in the 40’th round based on the

previous 39. There are 439 possible histories of play. If players randomize

then all histories are equally likely and equally useless as predictors for round

40. For a completely non-parametric test, treat each possible history as a

distinct category—439 dummy variables in, say, a logit model. The number

of 40-round games necessary to test this model has a magnitude somewhere

between the U.S. debt in dollars and the universe in atoms.

The psychology literature suggests that players retain at most 7 distinct

items in sort-term memory, see Rapoport & Budescu (1997). Which leads to

the question, what counts as an item? Perhaps players retain running totals

or some other aggregates of a round; or perhaps an item is as petite as what

the opponent played last time. For the sake of discussion, one round of play

is an item, and short-term memory is seven rounds. Recall that baseline

specification is l = 5. Five is a nice number in terms of the cognitive model
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of limited short-term memory, yet long enough to be quite distinct from a

linear model. But seven is almost as good in M&S and better in R&B. Make

it seven.

Seven rounds yield 47 = 16, 384 paths through the tree of possibly-

remembered play. It is better than 439, but still far to many. In a game

of 40 rounds, only 33 seven-step paths will be realized. With 10 pairs, as

in M&S, at most 330 distinct seven-step paths exist in the data. More than

16,000 of the possible paths will not occur at all, which makes calculation of

their relative frequencies awkward.

While there are 16,384 relevant paths, it is plausible that players treat

some of them as functionally identical. An intuitively appealing grouping is

to look at offense versus defense. Suppose Row seeks to befuddle Column’s

efforts to guess Row’s model. Playing defense, Row uses a partition of path

space conditioning on her own past play only. Learning theory makes a

similar division between reinforcement learning and behavior strategies. A

reinforcement strategy conditions on own past play and payoffs. On the other

hand, if Row plays offense, her behavior will induce a partition of the path

space conditioning on Column’s play only. The goal of offense is for Row

to win by using past Column play and a model of his behavior to forecast

him. Offense has an analogy in behavior strategies. Offensive and defensive

partitions preclude decision-making based, for example, on Row play for the

first 3 lags, and Column play for the next 4. But the gains in tractability are

large. Now instead of 16,384 paths there are 27 = 128 paths of offense and a

like number of defense. Yet 128 dummy variables is still too many.

Assume that the effect on choice in period t of period t−n is independent
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of the effect of period t − m, m 6= n. Then a linear specification can help.

Seven dummy variables will do, one at each period for seven lagged periods.

Every path is a linear combination of these seven choices. This structure

is a reasonable and parsimonious response to the problem of dimensionality.

Learning theories and M&S’s tests are all based on linear combinations of

past play. On the other hand, true randomness is (trivially) linear, and the

dummy variable specification is linear as well. If behavior is non-linear, by

assuming linearity we assume a feature of the null in order to test it—which

may make it harder to disprove.

Consider other partitions of the path space. Then: (1) one can choose

a partition that embodies a theory of actual decision-making, like represen-

tativeness or Rabin’s model and (2) one can choose a partition that reflects

a more thoughtful trade-off between the curse of dimensionality and loss of

information from grouping paths.

Balance partitions paths into equivalence classes and then ranks the

classes, like preference orderings partition consumption space. Consump-

tion bundles are separated into equivalence classes, the indifference curves

of consumption theory. Preferences impose an ordinal ranking among bun-

dles on different indifference curves. Analogously, balance divides paths into

equivalence classes of equal perceived randomness, and supplies an ordinal

ranking of the classes. In seven step defense 128 paths fall into 8 equivalence

classes, and these classes are ranked from 1 to 8 in perceived implication

for the next round. Now we are in business. This is more parsimonious

than dummy variables, yet incorporates a non-linear specification. What is

more, since it is supposed to reflect bounded rationality, the model ought
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to boil down to something simple. These equivalence classes are used to

diagnose patterns, but not to predict. Prediction is easier: Make the more

representative choice.

Balance then runs is but one model for boundedly rational randomiza-

tion. One might use balance alone, considering only paths of odd length so

there are no ties, or adding some other tie-breaker. Another alternative: the

most representative long path is simple alternation, HTHTHTHTHT . . . .

Perhaps few would think that path particularly random, and a better test

would be based on how close the number of runs is to its expected value, con-

ditional on randomness (or some boundedly rational variant). Yet another

way: Take the basic unit as more than one round. If the basic unit is two

rounds then the strategies are HH, HT , TH and TT ; apply a representa-

tiveness model to these. But this may be too clever by half. My choice for

this paper—balance then runs—has the benefit of a finer weak ordering than

balance alone, while being simple relative to alternatives.

Now turn to the plausibility of the results. The probability that the

baseline specification, Table 2, Column 1 is a chance occurrence is less than

four in ten thousand, according to the z-score. In probing the quality of the

phenomenon here, I confess to running many regressions, but not quite that

many. And the diagnostic tests in section 1 are not subject to this concern.

Still, data mining concerns are serious. Here is a list of the elements

of the work that could have been manipulated in search of a result: path

length l, trigger level, x, correlation statistic, ρ, minimum observations value,

ŵ, window size, w, fixed effects (yes/no), logit v. OLS, and permutations

of Models 1 through 4. However, I have reported the effects of varying
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all these parameters. Without exception, the Model 1 results are robust

to modest changes in parameter values and inconsistent with simply trying

everything until something worked. One might also manipulate the data

directly, omitting troublesome players or time periods. Here all the data

were submitted to the filter. Or one might use a different path length l for

the filter than for the representativeness prediction. I did not.

The Model 1 baseline specification is so robust it might be too good to

be true. Other models, by their contrast, provide a reality check. Models

3 never worked, even at a modest level of statistical significance. Models 2

and 4 were relatively robust in the R&B data set, but not M&S.

The R&B data is also a robustness check—to see whether the baseline

result was a fluke, but also to test whether the M&S data set was a fluke.

It passed. The z-scores for R&B are even higher than in the M&S data.

Finally, I simulated pseudo-random data sets and tried to mine them. If the

analysis is valid, this mining project should fail. It did.

3.4 Is it Economics?

If psychology is the study of what people do, economics is the study of what

they ought to do. This paper straddles the fence. Representativeness is a

bounded rationality model—what people do rather than what they ought

to do. Yet representativeness is also rational optimization constrained by

absence of an internal randomization device, and limited memory. While the

constraint is not in the stars—it is in ourselves—it remains exogenous. Such

constrained optimization is the root of economics. An alternative economic

interpretation: Optimize when an opponent is boundedly rational. Models 3
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and 4 are based on this approach.

3.5 Extensions

The data do not admit a test of how players play against a true pseudo-

random opponent. The data reviewed here involve human players facing

other human players, who may or may not be completely unpredictable. An

experiment with human players playing against a computer playing pseudo-

random strategies might provide insight. Shachat & Swarthout (2003) have

such an experiment, but their analysis heads in a different direction.

My analysis could not determine whether predictability persists in the

presence of an opponent taking advantage of it. It is not clear whether play-

ers are aware of representativeness at all, or whether the patterns present

“hunches” or “intuitions” whose source is obscure to the player. The evi-

dence of sophisticated behavior in this data suggests that players may not

respond to Model 3 differently than they respond to a typical human player or

to randomness. Conversely, there is experimental evidence that players can

learn to avoid autocorrelation, Camerer (1995). For a direct test, try an ex-

periment in which human players confront Model 3: it plays pseudo-randomly

when representativeness is not significant and otherwise best responds.

It might also be interesting to have the computer play representativeness,

or representativeness conditional on stochastic path length, to see whether

players can detect and exploit this predictability.

Shachat’s game (Shachat (2002)) has more stage game structure than

matching pennies, but it would be interesting to supply a matching pennies

version of his ‘shoe’ and see if representativeness is associated with how
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the shoe is used. I am concerned, however, that providing the shoe and

instruction on how to use it will affect behavior. It could be part of learning

how to be random.

How do pairs differ? Is representativeness in a player correlated with rep-

resentativeness in the opponent? Probably not. That Row is representative

has no implications for Column. This fits with the surmise that opponents

have difficulty separating representativeness from random play.

The Nash equilibrium strategy is a random walk. It has a unit root. Does

experimental data have a unit root. Is this another source of predictability?

There are situations other than matching pennies in which humans have

an incentive to generate randomness. One unanswered question (among

many) is whether market forces punish representativeness severely enough

to expunge it from the market, Camerer(1995). In the absence of a struc-

tural model, my hypothesis is simple: If the market exhibits short-term pre-

dictability, an arbitrageur will exploit it, if they can profitably. Expect rep-

resentativeness to be more significant where transactions costs relative to

potential rewards are larger—in higher frequency data for smaller issuers.

The filter might be modelled in light of Rabin (2002). Each equivalence

class of paths may have a well-identified distinct probability for, say, H in the

next stage. When N is small and the equivalence class extremely unbalanced,

the probability of successful prediction should will be large. If N is found to

be stable, predictability could be predicated on N and a single path rather

than the computationally intensive filter used here. The model might also

be extended to allow for boundedly rational updating of θ.
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4 Conclusions

One who sees glasses as half full will conclude that about half of us are really

good randomizers. Others, while predictable, use a non-linear technique that

is not half bad. While I have spotted their trick, few of their opponents did.

One who sees glasses as half empty will see that some of us can be gamed,

and perhaps even wonder how such boundedly rational genes made it this

far.

Defensive representativeness is a prominent phenomenon in matching

pennies; other patterns were statistically significant but not as striking. So

there are a few answers here and many questions. This paper is more akin

to the first word than the last.
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