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Abstract

I consider a situation in which a principal commits to a mechanism
first and then agents choose unobservable actions before they draw their
types. The agents’ actions affect not only their payoffs directly but also
a distribution of private types as well. Thus, the distribution of types is
determined endogenously rather than exogeneously unlike standard mech-
anism design literature.

Then I extend Cremer and McLean’s full surplus extraction theorem
[10] to such a setting, that is, identify a necessary and sufficient condition
on the information structure for the full surplus extration. More impor-
tantly, it implies that the full surplus extraction may not be obtained for
generic set of information structure in this more general setting. This
contrasts with the standard full surplus extraction theorem which holds
generically.

I show, however, that the principal can extract all the surplus for any
completely mixed action profile for almost all information structure by
using more general mechanisms in which agents announce both their types
and the realizations of their mixed actions. Since any pure action profile
can be arbitrarily approximated by a completely mixed action profile, the
principal can virtually extracts all the maximized social surplus.
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1 Introduction
Since the seminal paper by Hurwicz[15], mechanism design literature has been
dealing with a variety of situation of which asymmetric information among
agents is an important aspect. Standard assumption in this literature is that
there is some exogenously given distribution of private types, which is common
knowledge among all agents and a principal. In this paper, I consider a situation
in which a principal commits to a mechanism first and then agents choose un-
observable actions before they draw their types. The agents’ actions may affect
not only their value of allocations but also a distribution of their private types
as well. Thus the distribution of types is determined endogenously rather than
exogenously unlike standard mechanism design literature. One special example
of such situation would be an auction in which the bidders can gather private
information about the object by spending some costs.1 There have been several
works on costly information acquisition such as Matthews[20], Stegeman[27] and
more recently, Persico[25], Bergemann and Välimäki[3].
In this more general setting in which players’ type distribution is determined

endogenously, I consider a possibility of full surplus extraction, in particular, a
possibility of full surplus extraction when the surplus-maximizing action profile
is implemented. Cremer and McLean [10] (CM) identified a necessary and
sufficient condition on the information structure for a principal to be able to
extract all the rents from the agents in auction. I extend their full surplus
extraction theorem to the current setting.
More importantly, my characterization result shows that full surplus extrac-

tion does not hold for a generic set of information structure in this more general
setting. CM showed that their necessary and sufficient condition on information
structure is satisfied generically and this result was extended by McAfee and
Reny[21] to cases with continuous type under weak conditions. These papers
cast a doubt on the robustness of the results obtained in standard mechanism
design framework where agents are risk neutral and their type distributions are
independent. On the other hand, casual observation shows that a principal never
be able to extract all the rents from the agents, or there is just no such sophisti-
cated mechanism as CM’s mechanism to try to extract all the surplus. Indeed,
mechanisms we see are often very simple as assumed in standard mechanism
literature. This calls for an explanation, or more substantially, a foundation for
standard mechanism design framework. To address this question, some papers
take CM’s model as a benchmark, then introduced a new feature so that full
surplus extraction may fail. One paper introduced risk averseness/limited lia-
bility (Robert[26]) and other papers questioned the routine use of common prior
assumption (Neeman[23]). This paper contributes to such strand of literature
by adding one more reason for the failure of full surplus extraction; if agents
can affect the underlying type distribution through their actions, the principal
may be kept from extracting the full surplus and even forced to use a simple
mechanism.

1 It is special in the sense that the value of allocation is not directly affected by actions.
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I illustrate this point using a simple example of auction with costly infor-
mation acquisition. It is an auction in which two bidders can pay some cost
to obtain information about the object for themselves or pay the same cost to
steal the other bidder’s information. The auction can be relatively more com-
mon value or private value depending on one parameter. When there is enough
common component, no information acquisition is optimal as the allocation of
good is not a big problem. On the other hand, when the auction is more private,
costly information acquisition is optimal as it facilitates more efficient allocation.
Either way, the mechanism to extract all the surplus necessarily takes a form of
sophisticated lottery as in CM given the optimal action profile. When a bidder
announces her type, she receives a lottery, the outcome of which depend on the
other bidder’s announcements. As is well known, the seller cannot extract all
the surplus when the bidder’s types are independent. But, when there is no
action, the seller can extract all the surplus by using such sophisticated lottery
when the bidders’ types are enough correlated. However, this is no longer true
when there are available actions. As the stake of the auction becomes big, each
bidder’s payment becomes necessarily more and more sensitive to the other bid-
der’s announcement and monetary transfer tends to be a huge amount. This
breaks down the bidders’ incentive for costly information acquisition or no costly
information acquisition because stealing information becomes mote attractive
given such extreme payment scheme.
I show, however, that the principal can extract all the surplus for almost

all information structure if there is more flexibility in terms of available mech-
anisms. It is shown that the principal can extract all the surplus for any com-
pletely mixed action profile for almost all information structure by using more
general mechanisms in which agents announce both their types and the realiza-
tions of their mixed actions. Since the efficient action profile can be approx-
imated arbitrarily closely by a completely mixed action profile, the principal
can virtually extract all the maximized social surplus. This result reinforces the
results obtained by Cremer and McLean and McAfee and Reny.
The basic model and definitions are introduced in the next section. CM’s

full surplus extraction theorem is extended to the current setting in Section
3. It is also shown that full surplus extraction is not a generic result anymore
unlike standard cases with a fixed type distribution. An explicit example of an
auction with costly information acquisition is given in Section 4 to illustrate
this failure of the full extraction. Section 5 proves a strengthened full surplus
extraction theorem which works for almost all information structure, and Section
6 concludes.

2 The Model and Definitions

2.1 The Model

There is one principal and n (≥ 2) agents; N = {1, 2, ..., n} . Agent i takes
an action from a finite set Ai, then draws her type according to some joint
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distribution over S =
Qn
i=1 Si conditional on all agents’ actions, where Si is a

finite set of possible player i’s types. Information structure (π, S,A) is defined
as the set of conditional distributions on S given action profile; {π (s|a)}s∈S,a∈A.
Thus the space of information structure Ψ can be identified as |A|-time products
of |S|−1 dimensional simplex in <|A|×(|S|−1)+ .2 In some contexts, a more specific
distribution form π (s|a) =Pv∈V p (v)

Qn
i=1 f (si|vi, ai) is useful. This is called

Information Acquisition Model. Interpretation is that v = (v1, ..., vn) ∈ V is a
value vector and each agent receives a conditionally independent signal about
her own value and informativeness of i’s signal depends on i’s action ai. For
this specific class of information structure, the space of information structure is
identified as the product space of p (v) and f (si|vi, ai) , i = 1, ..., n. Let p (sj |a) =P

s−j∈S−j π (sj , s−j |a) be the marginal distribution on Sj given a. It is assumed
that p (si|a) > 0 for all a ∈ A =

Qn
i=1Ai and si ∈ Si. Let π (s−i|si, a) = π(s|a)

p(si|a)
be agent i0s subjective distribution over the other agents’ types given private
signal si and action profile a. Let p (sj |si, a) = π(si,sj ,s−i,j |a)

p(si|a) , j 6= i be agent i0s
subjective distribution over agent j’s types given (si, a) .
The agents choose their actions simultaneously, and their actions and types

are observable neither to the principal nor the other agents. In the beginning
of the game, the principal chooses a (direct) mechanism (x, t) which maps a
profile of announcements es ∈ S into an allocation x (es) ∈ X and transfers
t (es) = (t1 (es−1|es1) , ..., tn (es−n|esn)) ∈ <n, where ti (es−i|esi) is a transfer for agent
i.
The principal’s revenue is simply given by

Pn
i=1 ti. Agent i

0s payoff consists
of three components. Agent i’s utility from allocations is given by Vi : X ×
S × A → <+. In general, it depends on the other agents’ types s−i (mutually
payoff-relevant) and action profile a. However, since agents’ utility may take
more specific forms for specific applications, I often focus on a particular class of
utility functions. The class of utility functions which only depends on x and si is
called TYPE I and denoted as Vi (x, si) ∈ V I . The class of utility functions which
depends on x and s is called TYPE II and denoted as Vi (x, s) ∈ V II . Finally,
the most general utility functions Vi (x, s, a) are called TYPE III.3 Clearly, V I

⊂ V II ⊂ V III . Utility Vi and transfer ti are two components of agent i0s payoff
which matter if and only if agent i plays the mechanism offered by the principal.
The third component of agent i’s payoff is gi (ai) which is independent of i0s
decision to enter or stay out of the mechanism. This term reflects a direct cost
or profit associated with one’s own action 4. Let g∗i = maxai gi (ai) .

2
©
π (s|a) ∈ <+|

P
s∈S π (s|a) = 1, s ∈ S, a ∈ A

ª
3As an example of such utility function which depends on a and s, consider a procurement

auction in which a principal is selling a project which requires a new, sophisticated technology.
Bidders invest their resources to this new technology before they play the auction. Suppose
that their investment has two effects; information gathering effect and value-enhancing effect.
Given that every bidder’s information is relevant to the other bidders, agent i’s utility is given
by Vi (x, s, ai) (or Vi (x, s, a) if bidders actions have direct externality on the other bidders)
for this example.

4 It is easy to have gi depend on the other agents’ actions as well. In such a case, however, i’s
outside option (= maxai gi (ai, a−i)+constant) depends on which action profile to implement.
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Given (x, s, a) and ti, Vi (x, s, a) − ti + {gi (ai)− g∗i } is called agent i’s
total rent. I call Vi (x, s, a) − ti (s) simply agent i’s rent and Vi (x, s, a) +
{gi (ai)− g∗i } is called agent i’s surplus. Ex-ante refers to a value before type is
drawn and interim means a conditional value given agent’s type. For example,P

s∈S π (s|a)Vi (x (s) , s, a) is an ex-ante expected utility and
P
s∈S π (s−i|si, a)

(Vi (x (s) , s, a)− ti (s−i|si)) is an interim expected rent.
The time line of the game is shown in Figure 1.5 Since the principal can

commit to a mechanism in the beginning of the game, it is without loss of
generality to focus exclusively on direct mechanisms in terms of equilibrium
payoff characterization. There are two different scenarios depending on the
timing of agents’ participation decision. Interim participation case is the case
in which the agents’ participation decision comes after their private types are
realized. Ex-Ante participation case is the case in which the agents have to
decide to participate before any action is taken. In either case, each agent’s
reservation value is normalized to 0 without loss of generality. As explained
later, both cases fit in my model by taking into account appropriate individually
rational constraints.
Let Γ be the set of all direct mechanisms, that is, all pair of mappings

x : S → X and t : S → <n. The principal’s strategy is simply to commit to
one mechanism in the beginning of the game. Agent i0s strategy σi = (σ

a
i ,σ

s
i )

simply consists of two mappings; σai : Γ → Ai which maps a mechanism into
an action and an announcement strategy σsi : Γ × Si → Si.

6 Note that agents
are only allowed to reveal their types even though their actions are also their
private information. Of course, this is without loss of generality as long as the
implementation of pure action profiles is concerned, which is a natural starting
point given that I am concerned with the implementation of efficient outcomes.
I will come back to this issue when I analyze a more general class of mechanism
in which the agents play mixed action profiles and announce both their private
types and their realized actions.
Finally, I use perfect Bayesian Nash equilibrium as an equilibrium notion for

this model.7

Since this may make an analysis look unnecessarily more complicated and blur the notion of
full surplus extraction, I decided not to include the other agents’ actions in gi.

5 It is a strong assumption that the principal can choose a mechanism before any action is
taken, thus before agents draw their types. This assumption may be satisfied, for example,
for repeated auctions for which a principal need to choose a format in the beginning for every
auction.
I also try to justify this assumption later by showing that the principal indeed has a very

strong incentive to committ to a mechanism before any action is taken.
6 Since it is not efficeint to keep some agents out of the mechanism, every agent enters the

mechanism in any efficient equilibrium. So I ignore their entry strategy and just check their
interim IR conditions.

7 Since I focus on the failure of full surplus extraction (except for Section 5), I prefer to use
less restrictive notion of equilibrium here. Hence I do not use a stronger notion of equilibrium
such as dominant strategy equilibrium or ex-post equilibrium.
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Figure 1:

2.2 Relevant Constraints

To check whether (x, t) and a can be implemented as an outcome of Bayesian
Nash equilibrium, I only need to verify the following constraints. First, all
agents play the mechanism on the equilibrium path without loss of generality;X
s−i∈S−i

π (s−i|a, si) {Vi (x (s) , s, a)− ti (s−i|si)} ≥ −η for all si ∈ Si, i ∈ N

(IRinterim)

If agent i’s participation decision comes after si is drawn, then η is simply the
reservation value 0. On the other hand, if agent i needs to sign a contract before
taking action, but can opt out after she learns her type, then η may be strictly
positive. It reflects an upper bound on the amount of fine which can imposed
for a breach of contracts. All the theorems are valid for these two different
scenarios; Interim participation and Ex-Ante participation.
Second, I need the following truth telling constraint on the equilibrium path;X

s−i∈S−i
π (s−i|a, si) {Vi (x (s) , s, a)− ti (s−i|si)} (ICsi)

≥
X

s−i∈S−i
π (s−i|a, si) {Vi (x ((s0i, s−i)) , s, a)− ti (s−i|s0i)} for all si, s0i ( 6= si) ∈ Si
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Third, agents have to have incentive to play a;X
s∈S

π (s|a) (Vi (x (s) , s, a)− ti (s−i|si)) + gi (ai) (ICai)

≥
X
si∈Si

p (si|a0i, a−i)

max

 X
s−i∈S−i

p (s−i|si, (a0i, a−i))
½
Vi (x ((s

0
i, s−i)) , s, (a

0
i, a−i))

−ti (s−i|s0i)
¾
,−η


+gi (a

0
i) for all a

0
i (6= ai) , i ∈ N.

This means that an agent would not gain by deviating to play some action a0i
and use any announcement/participation strategy.
Finally, the following Ex-Ante participation constraint needs to be satisfied

additionally for Ex-Ante participation scenario;X
s∈S

π (s|a) (Vi (x (s) , s, a)− ti (s−i|si)) + gi (ai) ≥ g∗i (IRExAnte)

This constraint is redundant for Interim Participation scenario or when η = 0.

2.3 Examples

Some simple examples are provided below to motivate the above general model.

Example 1: Auction with Interdependent Values

One object is to be allocated among n bidders. True value of the object
consists of n components v = (v1, ..., vn) , which is stochastic and whose distri-
bution is known to everyone. The value of the object for bidder i is given byPn

k=1 ai,kvk, where coefficients ai,k are exogenous and may be different across
the bidders. Bidder i cannot observe her true value, but can obtain some in-
formation si. The quality of i0s information depends on i’s effort level. Each
agent may be able to make si to be a more accurate signal about vi or a more
accurate signal about the other variables such as vj , sj , j 6= i by choosing an
appropriate type of effort. The distribution of signal profile conditional on any
action profile and v = (v1, ..., vn) is commonly known to all bidders
For this example,X = {1, ..., n} . Bidder i’s utility is Vi (x, s) = E [

Pn
k=1 ai,kvk|s]

if x = i and 0 otherwise. Since it is natural to assume that the auctioneer cannot
identify the bidders in advance, it is appropriate to assume that only interim
IR constraint binds (η = 0) .

Example 2: Efficient Task Allocation Problem

A principal is trying to assign n different tasks to n agents with different
characteristics. Only one agent can be assigned to each task. Thus X is a
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space of all permutations mapping {1, ..., n} to {1, ..., n} . The resulting profit
from this team production is independent of task allocation, but task alloca-
tion affects the cost each agent has to incur. Each agent’s cost Ci,k (θi, τ) of
conducting task k is a function of her own characteristic θi and all task’s char-
acteristics τ = (τ1, ..., τn). Agent i can obtain some information si,k about a
characteristic of task k, whose quality can be improved if agents pay some costs.
Let si = (si,1, ..., si,n) be agent i0s information vector. These information may
be potentially useful to implement the efficient cost-saving task allocations. For
this example, it is natural to assume that the principal makes a take-it-or-leave-
it offer before any information gathering activity takes place. Each agent can
opt out by paying a penalty for breach of the contract after she learns her type.
For this example, agent i’s utility function is given by Vi (x, s) = −E [Ci,k (θi, τ) |s]

if task k is assigned to i. The principal’s objective function is Profit +
Pn

i=1 ti.

2.4 Some Definitions

Optimal Allocation

It is assumed that Vi (x, s, a) is continuous with respect to x for each (s, a) ∈
S × A for all i, and that X is a compact metric space. Then, the opti-
mal allocation function xa (·) exists for each action profile a ∈ A.8 When
every agent plays the mechanism and (x, s, a) is realized, the social surplus
is
Pn

i=1 Vi (x, s, a) +
Pn
i=1 {gi (ai)− g∗i } . Thus, xa (·) maximizesX

s∈S
π (s|a)

nX
i=1

Vi (x (s) , s, a) +
nX
i=1

gi (ai)

Let W (a) =
Pn
i=1

P
s∈S π (s|a)Vi (xa (s) , s, a)+

Pn
i=1 {gi (ai)− g∗i } be the op-

timal social surplus given a ∈ A. Let A∗ (V, g) be the set of action profiles which
maximizes W (a) given V = (V1, ..., Vn) and g = (g1, ..., gn) .

FSE-implementability

Definition 1 An action profile a ∈ A is FSE-implementable if there exists a
perfect Bayesian Nash equilibrium ((xa, t) ,σ) in which a is played and all the so-
cial surplus is extracted by the principal, that is,

P
s∈S π (s|a)

Pn
i=1 ti (s−i|si) =

W (a) .

Definition 2 An information structure (π, (S,A)) has FSE property in V X if,
for any V ∈ V X and g, there exists a ∈ A∗ (V, g) which is FSE implementable.

8The optimal allocation function is independent of a for TYPE I and II utility funtions.
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3 The Full Surplus Extraction Theorem

3.1 Cremer and McLean (1988)

If the action set is singleton (or equivalently, Vi,π, and gi do not depend on ac-
tions), this problem reduces to a standard full surplus extraction problem. Thus
the original surplus extraction theorem can be stated in the current framework.
Suppose that the action set is singleton and denote π (·|si, a) = π (·|si) . CM
showed that the full surplus can be extracted in Bayesian Nash equilibrium if and

only if π (·|si) is not a positive linear combination of
n
π (·|s0i) ∈ <|S−i|+ : s0i ∈ Si/ {si}

o
for any si ∈ Si.9 See Figure 2 (a) to get a geometric image of this condition. De-
note the convex full of a collection ofm vectors xi in <n by co {xi ∈ <n : i = 1, 2, ...,m} .
Then, their theorem can be stated as follows.

Theorem 3 (Cremer and McLean [10]) An information structure (π, S) has
FSE property in V Iand V II

¡
= V III

¢
if and only if π (·|si) /∈ co {π (·|s0i) : s0i ∈ Si/ {si}}

for all si ∈ Si and all i ∈ N.
The original theorem was proved only for V I . But as the authors claimed in

[9], it can be easily extended to V II . Another difference is that η can be positive
here. This is also easily accommodated to the original full surplus extraction
theorem.

3.2 Main Theorem

Now I extend the above theorem to the case with hidden actions. First, I
introduce a property of information structure which corresponds to the above
necessary and sufficient condition when hidden actions are present.

(∗) π (·|si, a) /∈ co {π (·|s0i, (a0i, a−i)) : (s0i, a0i) ∈ (Si ×Ai) / {(si, ai)}} for all
si ∈ Si, a ∈ A, and all i ∈ N.

The condition means that, for any si ∈ Si and a ∈ A, π (·|si, a) cannot
be a positive linear combination of a set of vectors, which include not only
π (·|s0i, a) as in CM, but also π (·|s0i, (a0i, a−i)) ; conditional signal distributions
after a deviation. If the set of conditional distributions after a deviation looks
like Figure 2 (b), then this condition is satisfied at a. If it is as shown in Figure
2(c), then the condition is violated. Intuitively, the condition (∗) is violated
if an information obtained by a deviation is in some sense essential about the
other agents’ types. This intuition motivates a simple model in the next section
in which an agent can steal the other agents’ information.
I need the following two regularity conditions to prove the theorem.10

9They also provided a necessary and sufficient condition for full surplus extraction with
dominant strategy equilibrium.
10These conditions are much stronger than necessary, but they help me to simplify the proof

in the paper considerably. They will be replaced by weaker and simpler (if any) conditions in
later versions. Note also that these conditions are trivially satisfied in Cremer and McLean’s
setting with no action.
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(a) (b) (c)

π( - |si,a)1

π( - |si,a)2

π( - |si,a)3 π( - |si,a)4

π( - |si,a)5

π( - |si,(a’i,a –i))6

π( - |si,(a’’i,a –i))7

π( - |si,(a’’i,a –i))8

Figure 2:

Condition 4 For any a and i ∈ N, there does not exist λ : Ai/ {ai} → <+
such that p (sj |a) =

P
a0
i
∈Ai/{ai} λ (a

0
i) p (sj |a0i, a−i) for all j 6= i.

Condition 5 π (·|a) /∈ co {π (·|a0i, a−i) : a0i ∈ Ai/ {ai}} for all a ∈ A, and all
i ∈ N.
These are relatively weak regularity conditions. For example, both condi-

tions are generic in Ψ if |Ai| ≤ maxj 6=i |Sj | .
The first main theorem of this paper is the following extension of the full

surplus extraction theorem in V II and V III .

Theorem 6 An information structure (π, S,A) has FSE property in V III if
and only if it satisfies (∗) . An information structure (π, S,A) has FSE property
in V II if it satisfies (∗) , and (∗) is implied by FSE property if Condition 5 holds.
Proof. See Appendix.

The basic idea of the proof is as follows. Since V II ⊂ V III , I only need to
prove sufficiency for V III . The sufficiency part is a relatively straightforward
extension of CM’s idea. Suppose that the condition (∗) holds. Then, a function
wi (·|si) for each si can be constructed so that

P
s−i∈S−i π (s−i|si, a)wi (s−i|si) =

0 and
P
s−i∈S−i π (s−i|si, (a0i, a−i))wi (s−i|s0i) > 0 for all (s0i, a

0
i) 6= (si, ai) by

Farkas’ lemma. Then, transfer ti (s−i|si) is defined as the sum of wi (s−i|si) and
the constant term which extracts agent i0s expected surplus (=

P
s∈S π (s|a)
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π( - |si,a)π( - |s’i,a) π( - |s’’i,(a’i,a -i))

t’’i( - |si) t’i( - |si)

Figure 3:

Vi (x (s) , s, a) + {gi (ai)− g∗i }). These wi (s−i|si) can be chosen so that agent
i loses a huge amount of money from deviating from ai and/or lying (s0i 6= si) .
Given such transfer functions, she does not have incentive to lie on the equilib-
rium path. She does not have incentive to deviate from ai either because the
expected loss from playing the mechanism is huge enough to overwhelm any gain
from distorting the distribution of private signals and final allocations. Hence
the only thing agent i can do is to stay out of the mechanism after a deviation.
This means that she can obtain at most g∗i from such deviation.
On the other hand, the necessity part is more involved. Below I illustrate

the logic of the proof for TYPE II utility functions using a simple example.
Suppose that the condition (∗) is violated for some (si,k, ai,k) 6= (si, ai) , k =
1, ...,K. Condition 5 guarantees that there exists some si,k 6= si. For simplicity,
I assume that π (·|s0i, a) (s0i 6= si) , and π (·|s00i , (a0i, a−i)) are two such vectors
as in Figure 3. Choose continuous functions Vi and gi , i = 1, ..., n so that
a is the unique surplus maximizing actions. Modify the utility of agent i bybVi (x, (s0i, s−i)) = Vi (x, (s

0
i, s−i)) + γ (> 0) and the utility of some agent j 6= i

by bVj (x, (s0i, s−i)) = Vj (x, (s
0
i, s−i)) − γ only for s0i. Note that the optimal

action profile and the optimal allocation function remains the same for such
modifications of utility functions. By assumption, there should still exist a
mechanism to implement a and extract the full surplus.
Now pick γ large enough so that bVi (x, (s0i, s−i)) > Vi (x, (si, s−i)) for all s−i

and x. First consider the case where the transfer function is such as t0i (s−i|si)
in Figure 3 when si is announced. If this is the case, then type s0i can pretend
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to be si to obtain more interim expected utility with less interim expected
payments than type si. This implies that the interim expected rent of s0i should
be higher than the interim expected rent of type si in equilibrium. Since the
interim expected rent of si is bounded below by 0, agent i0s ex-ante expected
rent from the mechanism exceeds g∗i −gi (ai) and the total rent becomes strictly
positive if γ is large enough. Since full surplus extraction is equivalent to 0 total
rent for all agents, the principal cannot extract the full surplus with a transfer
function such as t0i (s−i|si) when γ is large. Therefore, the equilibrium transfer
function should look like t00i (s−i|si) to make the expected payment of type s0i
from announcing si larger than the expected payment of type si in equilibrium.
As γ becomes larger, the size of t00i (s−i|si) must become larger so that s0i needs
to make a large expected payment from pretending to be si. Note, however,
that a large expected payment for s0i implies a large expected profit for s

00
i who

pretends to be si after a deviation to a0i. Since every other type si 6= s00i can
guarantee at least −η after the deviation to a0i, the ex-ante expected rent from
such deviation exceeds g∗i −gi (a0i) at some point as γ becomes large, hence agent
i’s total rent becomes strictly positive in equilibrium. Since either one of these
two cases applies for any transfer function, the principal fails to extract the full
surplus from agent i if γ is large enough.

TYPE I Utility Functions

What happens if agent i0s utility only depends on her own type (Vi (x, si))?
Since V I ⊂ V II , (∗) is still sufficient. However, necessary condition can be
in principle weaker as less flexible utility functions lead to less implication on
information structure which has FSE property. Indeed a problem arises in the
above “proof” when γ is subtracted from agent j’s utility because j0s utility is
not a function of i0s type. The problem is, if γ is just added to agent i0s utility
function with type s0i, a may cease to be optimal when γ is large. In particular,
any action profile for which the probability of s0i is high becomes more attractive.
Condition 4 leads to the following useful lemma.

Lemma 7 There exists vj : Sj → <, j 6= i for any a ∈ A and i ∈ N such thatP
s∈S π (s|a)

P
j 6=i vj (sj) >

P
s∈S π (s|a0i, a−i)

P
j 6=i vj (sj) for all a

0
i 6= ai if and

only if Condition 4 is satisfied.

Proof. The conditionX
s∈S

π (s|a)
X
j 6=i

vj (sj) >
X
s∈S

π (s|a0i, a−i)
X
j 6=i

vj (sj) for a0i 6= ai

is identical to X
j 6=i

X
sj∈Sj

p (sj |a) vj (sj) >
X
j 6=i

X
sj∈Sj

p (sj |a0i, a−i) vj (sj)X
j 6=i

X
sj∈Sj

(p (sj |a)− p (sj |a0i, a−i)) vj (sj) > 0 for a0i 6= ai

12



Let pi,j (a, a0i) =
¡
p (sj,1|a)− p (sj,1|a0i, a−i) , ..., p

¡
sj,|Sj ||a

¢− p ¡sj,|Sj ||a0i, a−i¢¢
be a |Sj| dimensional vector for j 6= i and let A be (|Ai|− 1) ×

P
j 6=i |Sj | ma-

trix whose row vectors are given by (pi,1 (a, a0i) , ..., pi,n (a, a
0
i)) for a

0
i 6= ai. Let

v = (v1 (·) , ..., vn (·))> ∈ <
P

j 6=i|Sj | be a column vector. Then the above condi-
tion can be stated compactly as

Av > 0

By Theorem 2.9. in Gale [13], such v exists if and only if there does not exist
nonzero λ ∈ <|Ai|−1+ such that λ>A = 0. Thus the lemma is proved.

This lemma can be used to fix this problem. By Lemma 7, there exists vj :
Sj → <, j 6= i to satisfy Ps π (s|a)

P
j 6=i vj (sj) >

P
s π (s|a0i, a−i)

P
j 6=i vj (sj) .

Modify the utility of agent j 6= i by bVj (x, sj) = Vj (x, sj)+λvj (sj) . For each γ, λ
can be chosen large enough so that a is still optimal among all (a0i, a−i) , a

0
i ∈ Ai.

As for the other players’ action profile a0−i 6= a−i, gj
¡
a0j
¢
can be set to be very

small for all such actions to make sure that nothing but a−i can be optimal. In
this way, a set of (V, g) can be constructed for any level of γ while maintaining
that a is the unique optimal action. The rest of the proof is exactly the same
as before.

Theorem 8 An information structure (π, S,A) has FSE property in V I if it
satisfies (∗) , and (∗) is implied by FSE property if Condition 4 and 5 holds.

Proof. See Appendix.

3.3 Genericity of FSE Property

This theorem which extends Cremer and McLean has a corollary which is more
important than the theorem itself. How strong is this necessary and sufficient
condition (∗)? Suppose that the action set is singleton. Since π (·|si) , si ∈
Si are vectors on |S−i| − 1 dimensional simplex, they are generically linearly
independent (hence satisfy (∗)) if and only if |Si| ≤ |S−i| . In particular, this
condition is trivially satisfied if the number of types is the same for all agents.
The condition (∗) suggest that this is no longer the case when there are many
actions. When there are |Ai| actions, the set of vectors π (·|si, a) , si ∈ Si, a ∈ A
is generically linearly independent if and only if |Si| × |Ai| ≤ |S−i| , which may
be violated with large action spaces even when the number of the type is the
same for all agents. For example, when |Si| = m and |Ai| = K for all i, the
condition reduces to mK ≤ m (n− 1) , thus K ≤ n − 1. If n − 1 < K, then
there is an open set of information structure for which the set of conditional
distributions is not linearly independent. Indeed, it is not difficult to show that
there is an open set of information structure for which (∗) , an even weaker
condition, is violated. Thus, full surplus extraction result may not be obtained
for a generic subset of Ψ if n− 1 < K. I summarize these arguments below.
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Theorem 9 Suppose that |Si| = m and |Ai| = K for all i. FSE is a generic
property if and only if K ≤ n− 1.
Note that one can derive a corresponding result for information acquision

models. For this class of information structure, FSE is a generic property if and
only if K ≤ n− 1 and K ×m ≤ |V | (to be proved).

3.4 Discussions

Timing of Commitment by Principal

The crucial assumption of this model is that the principal can commit to
a mechanism before any action is taken by the agents. It is also possible to
think about a different model in which a principal proposes a mechanism after
actions are chosen, or a model in which the principal proposes a mechanism
and the agents take actions simultaneously. Which model is more appropriate
may depend on each specific context. For example, the latter may be a more
reasonable assumption if action is very difficult to observe by nature. Both
assumptions have been used in the literature. Lewis and Sappington[18] used the
former assumption in a multi-agent procurement model. Crémer and Khalil[7]
also uses the former assumption. Crémer, Khalil, and Rochet[8] used the latter
assumption in an interesting principal-agent model in which a mixed strategy
equilibrium is implemented.
I would like to point out that, in multi-agents model, the principal has a very

strong incentive to commit to a mechanism before any action is taken. Suppose
that the principal cannot commit to a mechanism. Since the principal knows
which action is taken by the agents in equilibrium, what matters for full sur-
plus extraction is CM’s necessary and sufficient condition given the equilibrium
action, which holds generically. Thus the principal can subtract all the ex-ante
expected utility (+η) (not the ex-ante surplus) generically because any cost as-
sociated with actions is sunk. This implies that the only implementable action
is the cheapest action profile. In the context of costly information acquisition,
this means that no agent spends money to obtain useful information. So the
principal needs to commit in advance to extract the most surplus with costly
information acquisition.11

Interim IR Constraint

Suppose that agents sign a contract before taking any action and that the
contract cannot be unilaterally disposed without the principal’s consent. This
leads to a model with only ex-ante IR constraint and no interim IR constraint.
Although its assumption is strong, such model may allow much larger room for
the full surplus extraction.
11This would not be a problem if an optimal action profile is the cheapest action. Indeed,

the principal may have incentive not to commit in the beginning for such a case as it may
leave some rents to the agents. See a common value example in Section 4.
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For this case, necessary and sufficient condition for the full surplus extraction
reduces to a much weaker condition, namely, necessary and sufficient condition
for the existence of efficient Bayesian incentive compatible mechanism. This is
because the principal can extract the full surplus as “entrance fee” when there
is no interim IR constraint.
Since VCG mechanism (Vickrey[28], Clarke[6], Groves[14]) can always im-

plement an efficient outcome for TYPE I utility functions in dominant strategy
equilibrium, the full surplus extraction result is obtained without any condition
for TYPE I utility functions. For TYPE II (mutually payoff relevant) or TYPE
III utility functions, it can be shown that an assumption similar to Assumption
I(ii) in Aoyagi[1] is a sufficient condition for the existence of efficient Bayesian
incentive compatible mechanism, which is satisfied generically.1213

Common Prior Assumption and Related Literature

This result is related to a violation of common prior assumption. As CM
has already pointed out in [10], one of the assumptions driving their full surplus
extraction result is common prior assumption. In this paper, all the agents
and the principal share the common prior on the equilibrium path, but they
do not off the equilibrium path. A situation without common prior is not just
exogenously given, rather endogenously generated off the equilibrium path.
There are other papers which examined the relationship of common prior

assumption and full surplus extraction. A recent paper by Neeman[23] ques-
tioned the notion of common prior as is used in standard mechanism design
literature. Neeman showed that the full surplus extraction fails when there are
two different types (with different utilities) who share the same belief about
the other types. Although such information structure is nongeneric in standard
settings, he argued that such structure indeed might be generic in universal
type space à la Mertens and Zamir [22].14 On the other hand, the full surplus
extraction fails to hold generically even in standard settings with common prior
in this paper. Also note that two types ((s0i, a) and (s

00
i , a

0
i)) in the example who

are responsible for the failure of the full surplus extraction have different beliefs
about the other types.15

12Assumption 1 (ii) corresponds to π (s−i|si, a) 6= π
¡
s−i|s0i,

¡
a0i, a−i

¢¢
for any

¡
s0i, a

0
i

¢
6=

(si, ai) and i ∈ N here.
13There are many papers which study the existence of efficient Bayesian incentive compatible

(BIC-) mechanism with budget balance
¡Pn

i=1
ti (s−i|si) = 0 for all s ∈ S

¢
. For TYPE I,

many sufficient conditions are available. Most general sufficient conditions are Condition
C∗ (d’Aspremont and Gérard-Varet[12] ), LINK (Johnson, Pratt and Zeckhauser[16]), and
Condition C (d’Aspremont,Crémer and Gérard-Varet[11]) , whcih turn out to be equivalent
(see [11] for detail). See also Matsushima[19] and Chung[5]. For mutually payoff-relevant
cases (TYPE II), see [16] and Aoyagi[1].
14Bergemann and Morris[2] analyzes general implications of relaxing an assumption of com-

mon prior on payoff relevant “naive” type spaces. They treat not only universal type space,
but also a variety of type spaces between universal type space and naive type spaces and show
that how larger type spaces lead to a stronger notion of equilibrium in usual naive type spaces.
15The similar point was first made by Parreiras[24].

15



The paper which is more closely related to this paper is Parreiras[24]. In his
model, each agent draws two private information (ti, θi) ∈ Ti×Θi, where ti is a
payoff relevant type (which corresponds to si in this paper) and θi is a parameter
which reflects informativeness of ti about t−i. Since θi is private information,
agent i’s true conditional distribution on T−i given ti is not common knowledge.
He showed that FSE property does not hold if there are θ0i and θ00i such that
i’s conditional distribution on T−i given

¡
ti, θ

0
i

¢
is more informative than i’s

conditional distribution on T−i given
¡
ti, θ

00
i

¢
in the sense of Blackwell. In this

paper, action plays a similar role to θi. Indeed, Blackwell condition C2 in [24]
is roughly a special case of (negation of ) (∗) . So, this paper can be regarded
as endogenizing such additional type as θ and generalizing the result in [24].
There is also important difference between this paper and [24]. In this paper,
FSE property fails to hold for a generic subset of the space of information
structure, while FSE is still a generic property for such augmented type space as
Ti×Θi because CM’s necessary and sufficient condition still holds generically in
Πni=1 (Ti ×Θi). The failure of full surplus extraction theorem in this paper is due
to the fact that all actions but one action is not taken on the equilibrium path
unlike such additional type as θi.16 Some crucial type with extreme conditional
belief is not present on the equilibrium path, but generated endogenously by
deviations to off the equilibrium path.

4 Information Acquisition or Information Steal-
ing?

In this section, I illustrate how a principal may fail to extract full surplus by
a simple example of auction with costly information acquisition. As shown in
the last section, full surplus extraction may fail when an agent can deviate to
gain “essential” information about the other agents, which is not available on
the equilibrium path. In the example in this section, bidders can spend their
resources to either (1) gather useful information about their own value or (2)
steal the other bidder’s information. When the private component of the bid-
ders’ value is dominant, it is optimal for the bidders to spend their resources to
acquire useful information. When the common component of the bidders’ value
is dominant, it is optimal not to waste any resource for information gathering
activity as allocation is not an issue. For either case, it is shown that the bidders
have strong incentive to steal the other bidders’ information if the principal tries
to implement such efficient action profile and extract the full surplus from the
bidders. This example also complement the general analysis in the last section
because it has much more specific structure. Although the necessity part of the
last section relies on a flexibility of utility functions, this example illustrates
16This motivates an introduction of mixed action profile in Section 5 because a realization

of action indeed serves as an additional type. Then (∗) is essentially CM’s necessary and
sufficient condition for full surplus extraction in the extended type space Πni=1 (Si ×Ai) .
Moreover, it is shown that (∗) holds generically in Section 5.
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that the same results can be obtained even for utility functions which has more
explicit structure.
Consider the following auction with two bidders i = 1, 2. Each bidder’s true

value is either v > 0 or 0. The joint distribution for v = (v1, v2) is given
by Pr (v1 = v, v2 = v) = Pr (v1 = 0, v2 = 0) =

1
4 + λ and Pr (v1 = v, v2 = 0) =

Pr (v1 = 0, v2 = v) =
1
4 − λ. Bidder i does not observe her true value before

the auction, but receives a private signal si ∈ Si = {h, l} . The accuracy of
bidders’ private signals depends on agents’ actions. Bidder i’s action set is Ai =
{NA, IA, IS} , where NA stands for No Action, IA for Information Acquisition,
and IS for Information Stealing. It is assumed that the cost of NA is 0, and
the cost of IA and IS is c > 0. When IA or NAis chosen by agent i, si
only depends on vi and independent of sj , vj. Note that this auction is an
independent private value auction when λ = 0 and a common value auction
when λ = 1

4 . I assume that Pr (si = h|vi = v) and Pr (si = l|vi = 0) = β > 1
2

when NA is chosen by bidder i. When IA is chosen by one or both agents,
private signals become more informative about their true values. I assume
that Pr (si = h|vi = v) and Pr (si = l|vi = 0) is β0 > β if IA is chosen by both
agents, and that Pr (si = h|vi = v) and Pr (si = l|vi = 0) is 1

2

¡
β0 + β

¢
if only

bidder i chooses IA.17 When IS is chosen, each bidder does not create any new
information about her true value, but steals the other agent’s private signal.
For example, if (IS, IA) is chosen, then Pr (s1 = s2) = 1, while s2 follows the
distribution described above. I leave the type distribution conditional given
(IS, IS) and v unspecified at this point as it is not relevant. Let Πi (a) be 2× 2
conditional distribution matrix

¡
π
¡
sn−i|smi , a

¢¢2
m,n=1

for agent i and Π (a) be

2× 2 joint distribution matrix (π (sm1 , sn2 |a))2m,n=1 .
The optimal action-allocation pair depends on the level of λ. For example,

if λ = 1
4 , then a

∗ = (NA,NA) and any allocation is optimal. The optimal
social surplus is v

2 . Needless to say, IS is not socially desirable for any λ as it
takes the same cost as IA but does not create any useful information. If λ is
small enough (values are enough independent), then (IA, IA) could be optimal.
Suppose that (IA, IA) is chosen. When (v1, v2) = (1, 1) or (0, 0) , the allocation
of the good does not matter. When (v1, v2) = (v, 0) or (0, v) , the good is
allocated to the high type with probability β02+2β0

¡
1− β0

¢× 1
2 = β0, assuming

that the auctioneer flips a coin to decide who win the good when (s1, s2) = (l, l)
or (h, h) .18 The optimal surplus is thus

©¡
1
4 + λ

¢
+
¡
1
4 − λ

¢
2β0
ª
v. Similarly,

the optimal surplus would be
©¡

1
4 + λ

¢
+
¡
1
4 − λ

¢ ¡
β0 + β

¢ª
v if only one bidder

chooses IA and
©¡

1
4 + λ

¢
+
¡
1
4 − λ

¢
2β
ª
v if (NA,NA) is chosen. It is assumed

that v is so large that it is socially optimal for both bidders to choose IA when
17This informational externality with respect to IA is not crucial for the result. Its role is

just to make (IA, IA) socially optimal action profile. This informational externality is not
needed if there are more than two bidders. I restrict the number of bidders to two and employ
this assumption just to make this example as simple as possible.
18Any other way to allocate the good in the case of tie leads to the same optimal surplus.
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λ is small enough, that is µ
1

4
+

β0

2

¶
v − 2c

>

µ
1

4
+

β0 + β

4

¶
v − c

>

µ
1

4
+

β

2

¶
v

Using these values, the optimal action profile can be characterized for each
λ.

Lemma 10 There exists λ∗ such that (IA, IA) is optimal for λ ∈ [0,λ∗] and
(NA,NA) is optimal for λ ∈ £λ∗, 14¤
Proof. By assumption,

©¡
1
4 + λ

¢
+
¡
1
4 − λ

¢
2β0
ª
v−2c and ©¡14 + λ

¢
+
¡
1
4 − λ

¢
2β
ª
v

crosses at some λ∗ ∈ ¡0, 14¢ , which is obtained by solving½µ
1

4
+ λ

¶
+

µ
1

4
− λ

¶
2β0
¾
v − 2c

=

½µ
1

4
+ λ

¶
+

µ
1

4
− λ

¶
2β

¾
v

Thus λ∗ = 1
4− c

(β0−β)v . It is also easy to show that
©¡

1
4 + λ

¢
+
¡
1
4 − λ

¢ ¡
β0 + β

¢ª
v−

c cross with these two lines at the same λ∗.

Suppose that IA is the only available action, then the auctioneer can extract
all the surplus as long as λ is strictly positive. Note that private signals are
affiliated given (IA, IA) . In particular,

Πi ((IA, IA))

=

µ
Pr (sj = h|si = h) , Pr (sj = l|si = h)
Pr (sj = h|si = l) , Pr (sj = l|si = l)

¶
=

µ
2A 2B
2B 2A

¶
where

A =

µ
1

4
+ λ

¶n
β02 +

¡
1− β0

¢2o
+

µ
1

4
− λ

¶
2β0

¡
1− β0

¢
B =

µ
1

4
+ λ

¶
2β0

¡
1− β0

¢
+

µ
1

4
− λ

¶n
β02 +

¡
1− β0

¢2o
Since A 6= B if λ > 0, this matrix is full rank and so clearly satisfies CM’s
condition for full surplus extraction.

18



Now I argue that the full surplus extraction is impossible if v is large enough.
Suppose that the auctioneer is able to extract the full surplus from the bidders.
If a bidder is a high type, she can pretend to be a low type and get more
expected utility than a low type would get. If the high type pay less than a low
type would pay in equilibrium by pretending to be a low type, the high type’s
interim rent should be larger by certain amount than the low type’s one. Since
the low type’s interim rent is bounded below by 0 by IR constraint, this gives a
lower bound for the high type’s interim rent. Since this lower bound increases
as v increases, the bidder’s ex-ante rent exceeds c at some point if v is large
enough, contradicting the assumption of full surplus extraction. This implies
that the high type needs to pay a certain amount more than a low type would
pay in equilibrium by mimicking a low type.
However, it becomes more and more difficult to satisfy this incentive con-

straint as v becomes larger. Let x = (π (l|l) ,π (h|l)) be a vector corresponding
to the conditional distribution given si = l, and y = (π (l|h) ,π (h|h)) . As dis-
cussed above, the transfer function t (·|l) for low type has to be as in Figure 4 to
make the high type pay more than a low type would pay when announcing l. It
turns out that, as v →∞, the auctioneer need to choose even an extreme trans-
fer such as t0 (·|l) whose component parallel to y − x is very large. This implies
that the low type receives a large amount of money when the other bidder is
also a low type and pay a large amount of money when a high type. Intuitively,
the scheme extracting the full surplus needs to reward a positive correlation of
announcements and punish negative correlation of announcements to cope with
the high type’s incentive to announce l.
However, if this is the case, bidder i can deviate to play the following strategy

profitably; play IS, announce l if si (= sj) is l and stay out of the mechanism
if si is h. Since a transfer from the auctioneer to agent i after (si, sj) = (l, l)
becomes larger and larger as v → ∞, the expected transfer from this strategy
exceeds the cost from stealing information at some point.
Since the same argument applies when (NA,NA) is the optimal action pro-

file (when λ > λ∗). The following proposition is obtained;

Proposition 11 There exists a v such that no optimal action profile is FSE-
implementable for any λ ∈ £0, 14¤ if v > v
Proof. See Appendix.

5 Private Strategy and Curse of Full Extraction
Theorem

In the last sections, the main interest is in implementing an efficient action
profile while extracting the full surplus. Thus the focus is naturally exclusively
on pure strategies. This section considers an implementation of mixed action
profiles. Notice that if players play a mixed action profile, they have additional
private information or endogenously generated “types” before the mechanism is
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π(l|si),

π(h|si)

1

1

x

y

t( - |l)
t’( - |l)

ti(l|si)

ti(h|si)

Figure 4:

played; a realization of their own behavior strategies. Since there is no reason
for the principal not to use such additional private information, I allow more
general mechanism in which the agents announce both their private signals and
realizations of their behavior strategies and the agent’s continuation strategies
depend on both private information. This kind of strategies is sometimes called
private strategy.19 This generalization of the mechanism implies an expansion
of players’ type spaces. Then it turns out that a set of conditional distributions
in such larger type space satisfies CM’s necessary and sufficient condition for
generic behavior strategy profiles for generic information structure. One impli-
cation of this theorem is that for any efficient action profile, there is a nearby
mixed action profile which is FSE-implementable for generic information struc-
ture, thus an information structure has virtual FSE property generically. This
result may reinforce a view expressed by Cremer and McLean and McAfee and
Reny that the standard model needs some additional feature which prevents the
principal from using such sophisticated scheme.
I use the last example of auction with costly information acquisition to moti-

vate such general mechanism. Suppose that the two bidders randomize between
19 It has been shown that private strategies are useful in many different contexts for differet

reason. What is relevant here is the insight that even if private signals are independent given
any action profile, a combination of private signals and a mixed action profile can be correlated
as shown by Bhaskar and van Damme[4]. The private strategy in this paper, which uses the
same idea but based on announcements, is similar to private strategies by Kandori[17] in the
context of repeated games with imperfect public monitoring.
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IA and IS. Player i plays IA with probability αi (∈ (0, 1)) and IS with prob-
ability 1 − αi for i = 1, 2. I assume that NA is not available for the sake of
simplicity. The definition of Πi (a) and Π (a) is generalized in a natural way in
the extended type space Ai × Si, i = 1, 2. Then, bidder i0s conditional distri-
butions Πi (a) in bidder j ( 6= i)’s extended type space Aj × Sj is obtained as
follows.

(IA, h) (IA, l) (IS, h) (IS, l)
(IA, h) 2αjA 2αjB (1− αj) 0
(IA, l) 2αjB 2αjA 0 (1− αj)

(IS, h)
0.5αj

0.5αj+(1−αj)(x+y) 0
x(1−αj)

0.5αj+(1−αj)(x+y)
y(1−αj)

0.5αj+(1−αj)(x+y)
(IS, l) 0

0.5αj
0.5αj+(1−αj)(w+z)

w(1−αj)
0.5αj+(1−αj)(w+z)

z(1−αj)
0.5αj+(1−αj)(w+z)

where π ((h, h) | (IS, IS)) = x,π ((h, l) | (IS, IS)) = y,π ((l, h) | (IS, IS)) =
w, and π ((l, l) | (IS, IS)) = z.
Notice that this conditional distribution matrix Πi (α) is full rank if and only

if the following joint distribution Π (a) on Πi=1,2 (Ai × Si) is full rank.µ
αiαjΠ ((IA, IA)) αi (1− αj)Π ((IA, IS))

(1− αi)αjΠ ((IS, IA)) (1− αi) (1− αj)Π ((IS, IS))

¶
The rank of this matrix is the same as the rank ofµ

Π ((IA, IA)) Π ((IA, IS))
Π ((IS, IA)) Π ((IS, IS))

¶
which is 

A B 0.5 0
B A 0 0.5
0.5 0 x y
0 0.5 w z


After a couple of rank preserving manipulation, I get

B A 0 0.5
A B 0.5 0

0.5− 2Ax− 2By −2Ay − 2Bx 0 0
−2Aw − 2Bz 0.5− 2Az − 2Bw 0 0


This matrix turns out to be full rank for almost all x, y, w, z ≥ 0 such that

x+ y + w + z = 1 if A > B. Since CM’ s condition is satisfied in this extended
type space, payment transfers can be constructed in such a way that no surplus
is left to agents after any realization of action. This in turn guarantees that
the agents indeed have an incentive to use a completely mixed action profile
in the first place. This result is easily generalized to general games. Since
any pure action profile can be arbitrary approximated by a completely mixed

21



action profile and the full surplus can be extracted, the principal can capture
virtually all the social surplus associated with any pure action profile, including
the surplus-maximizing action profile.
Let me introduce some notations to introduce my final result.

Definition 12 An action profile α ∈ Π4Ai is FSE-implementable if there ex-
ists a perfect Bayesian Nash equilibrium ((xα, t) ,σ) in which α is played and
all the surplus is extracted by the principal, that is,

P
s∈S π (s|α)

Pn
i=1 ti (s) =

W (a)

Definition 13 An information structure (π, S) has virtual FSE property in V X

if, for any V ∈ V X and g, there exists α ∈ Π4Ai which is FSE implementable
and satisfies |W (a∗)−W (α)| < ε for a∗ ∈ A∗ (V, g) .

Then, the following general result is obtained.

Theorem 14 Suppose that |Si|·|Ai| ≤
P
j |Sj |·|Aj | for all i. Then (π, S,A) has

virtual FSE property for any action profile for almost all information structure.

Proof. To be completed.

Note that the above condition is satisfied if the number of types and actions
is the same for all players.

Comments

• Suppose that the joint type distribution is independent given the opti-
mal action profile. Then full surplus extraction fails even without hidden
actions. However, this theorem implies that even in such a case, the prin-
cipal may be able to extract almost all the surplus by letting the agents to
play some inefficient actions with some small probability and introducing
enough correlation on the extended type space. Note that an existence of
hidden actions is beneficial to the principal for such a case contrary to the
conclusion in the last sections.

• It may seem awkward to implement a mixed action profile because the
principal needs to force the agents to randomize in particular way. How-
ever, the following purification argument can justify this implementation
of mixed profile. Suppose that there is incomplete information in each
agent’s payoff and assume that the distribution of private payoff is com-
mon knowledge. Given such incomplete information, if any mechanism
keeps every agent indifferent among all actions without payoff pertur-
bation, each agent is going to randomize over actions in a particular way
which is common knowledge to every agent and the principal. Thus every-
thing would be consistent if the principal constructs a mechanism which
indeed implements this particular mixed action profile. In this story, im-
plementing a mixed action profile is totally natural. It may well be the
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case that the resulting mixed action profile is far from the efficient action
profile. If this is the case, the principal can adjust the rent each agent
would get from the mechanism in such a way that the agent will play
a completely mixed action profile close to the action profile. Of course,
some agents’ surplus may need to be strictly positive, hence full surplus
extraction may fail. However, this loss of surplus should be negligible if
payoff incomplete information is very small in its size as usually assumed.

• The timing of commitment is again very important. If the principal
chooses a mechanism after an action profile is chosen, then the princi-
pal can subtract all the agent’s utility (not surplus) generically because
she knows the joint distribution of the extended type space (although the
joint distribution on S is not common knowledge).

• The above genericity result is with respect to the space Ψ. Let’s examine
the case of information acquisition model. Suppose that the model is
symmetric; |Ai| = K and |Si| = m for all agents. I conjecture that, if |V |
is larger than or equal to Km, then virtual FSE property is generic even
for information acquisition models.

There are some nongeneric cases which are worth mentioning. First, when
the values are independent, virtual FSE property cannot be obtained be-
cause πi (s−i|si, a) are independent of (si, a) . For this case, the rank of
the joint distribution matrix is 1. Second, if there are some two actions
ai, a

0
i such that si given a

0
i is more informative about s−i in Blackwell

sense than si given ai, then virtual FSE property may fail (this example
can be found in Parreiras[24]). This happens when si given a0i is more
informative about v−i than si given ai. For this case, the rank of the joint
distribution matrix is at most (K − 1)m.
To see this, first note that Pr (s−i|si, ai) =

P
v−i Pr (v−i|si, a)

Q
j 6=i f (sj |vj , aj) .

Since si given a0i is more informative about v−i in Blackwell’s sense than
si given ai, there exists λsi ∈ 4Si such that Pr (v−i|si, a) =

P
s0
i
λsi (s

0
i)
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Pr (v−i|s0i, (a0i, a−i)) .20 Thus,

Pr (s−i|si, a) =
X
v−i

X
s0
i

λsi (s
0
i) Pr (v−i|s0i, (a0i, a−i))

Y
j 6=i
f (sj |vj , aj)

=
X
s0
i

λsi (s
0
i)
X
v−i

Pr (v−i|s0i, (a0i, a−i))
Y
j 6=i
f (sj |vj , aj)

=
X
s0i

λsi (s
0
i) Pr (s−i|s0i, (a0i, a−i))

Finally, let α−i ∈
Q
j 6=i4Aj be any mixed action profile by j 6= i. Since

agent i0s signal does not contain any information about the other play-
ers realized action profile, Pr (s−i, a−i|si, ai) = α−i (a−i) Pr (s−i|si, a) .
Therefore,

Pr (s−i, a−i|si, ai) = α−i (a−i) Pr (s−i|si, a)
= α−i (a−i)

X
s0
i

λsi (s
0
i) Pr (s−i|s0i, (a0i, a−i))

=
X
s0
i

λsi (s
0
i)α−i (a−i) Pr (s−i|s0i, (a0i, a−i))

=
X
s0
i

λsi (s
0
i) Pr (s−i, a−i|s0i, a0i)

This implies that Pr (s−i, a−i|si, ai) is a linear combination of {Pr (s−i, a−i|s0i, a0i)}s0
i
∈Si

for any si and any mixed action profile α−i. Thus the rank of the joint
distribution matrix needs to be reduced by at least m.

6 Conclusion
This paper extended Cremer and McLean’s full surplus extraction theorem to
the situation in which a principal commits to a mechanism first, then agents
20To see this, let eY is a garbling of Y with respect to X. The density functions for X,Y given

X, and eY given X are given by f (x) , g (y|x) ,P
y
h
¡ey|y¢ g (y|x) f (x), wherePey h ¡ey|y¢ = 0

for each y. Then,

Pr
¡
X = x0|eY = y0

¢
=

P
y
h (y0|y) g (y|x0) f (x0)P

x

P
y
h (y0|y) g (y|x) f (x)

=

P
y
h (y0|y)P

x
g (y|x) f (x)Pr (X = x0|Y = y)P

x

P
y
h (y0|y) g (y|x) f (x)

=
X
y

λy0 (y) · Pr
¡
X = x0|Y = y

¢
where λy0 (y) =

h(y0|y)
P

x
g(y|x)f(x)P

x

P
y
h(y0|y)g(y|x)f(x) (= Pr

¡
Y = y|eY = y0

¢
).
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take actions and draw their types. The agents’ actions not only affects the value
of the allocation but also the distribution of private types as well. Hence, the
distribution of types is determined endogenously rather than exogenously. One
special example of such situation is auction with costly information acquisition.
By doing so, it is shown that full surplus extraction does not hold generically

as it does in the standard mechanism design framework where the distribution
of types is given exogenously. This paper suggests that a possibility of manip-
ulating an underlying type distribution keeps principal from extracting the full
surplus and even force her to use a simple mechanism.
However, it is also shown that full surplus extraction is possible for generic

information structure if the principal can use a more general mechanism in which
the agents play a mixed action profile and announce both realization of their
actions and private types.
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7 Appendix: Proof of the Theorem
Proof of Theorem 6

Proof. (The sufficiency part): I only need to prove sufficiency for TYPE
III utility functions. Suppose that the assumption (∗) is satisfied. Then, for each
si, there exists wi (·|si) ∈ <|S−i| such that

P
s−i∈S−i π (s−i|si, a)wi (s−i|si) = 0

and
P

s−i∈S−i π (s−i|s0i, (a0i, a−i))wi (s−i|si) > 0 for all (s0i, a0i) 6= (si, ai) .21 Let
qi (si, a) =

P
s∈S π (s−i|a, si)Vi (xa (s) , s, a)+ {gi (ai)− g∗i } be type s0is interim

expected surplus given a ∈ A. Define the transfer for agent i by ti (s−i|si) =
qi (si, a) + λwi (s−i|si) where λ is some positive number. By definition, this
mechanism extracts the full surplus from agent i if a and x are successfully
implemented.
Three conditions should be checked; (1) agent i has to play ai(ICai) (2)

enter the mechanism (IRinterim), and (3) reveal her true type (ICsi) on the
equilibrium path (after ai is chosen). For ICsi , the following inequality should
be satisfied for all si ∈ Si;X

s−i∈S−i
π (s−i|a, si) {Vi (xa (s) , s, a)− ti (s−i|si)}

≥
X

s−i∈S−i
π (s−i|a, si) {Vi (xa (s0i, s−i) , s, a)− ti (s−i|s0i)}

These constraints are clearly satisfied if λ is chosen large enough.
It is also easy to see that IRinterim constraints are satisfied on the equilib-

rium path. For off the equilibrium path, note that the following inequalities are
satisfied for any a0i 6= ai and all s0i and s00i if λ is large enough;

−η >
X

s−i∈S−i
π (s−i| (a0i, a−i) , si) {Vi (xa (s00i , s−i) , (s0i, s−i) , (a0i, ai))− ti (s−i|s00i )}

This means that agent i’s IRinterim constraints are violated for every type if ai
is not chosen. Thus agent i0s most attractive deviation with respect to action
is to choose the action which maximizes gi and stay out of the mechanism
independent of her realized types. Since this leads to the same ex-ante expected
utility (= g∗i ) as agent i would get by playing ai on the equilibrium path, ICai
is also satisfied.
This proves that any a ∈ A can be implemented and all the surplus can be

extracted by the principal if λ is chosen large enough.

(The necessity part) Suppose that there exists {π (·|si,k, (ai,k, a−i))}Kk=1
for which (∗) is violated for some s∗i and a∗. It can be taken to be a minimal set of
such conditional distributions without loss of generality. I derive a contradiction
by assuming that the principal can extract the full surplus for any (V, g). I first
prove necessity for TYPE III utility functions.
21This is easily derived, for example, from Theorem 2.6(P.44) in Gale [13].
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(TYPE III utility functions): Choose a set of continuous functions Vi and
gi, i = 1, ..., n so that a∗ is the unique surplus maximizing action. Such Vi and gi
clearly exists. Now modify agent i’s utility by bVi (x, s, a) = Vi (x, s, a)+γδ (si, ai)
and some agent j’s utility (j 6= i) by bVj (x, s, a) = Vj (x, s, a)−γδ (si, ai), where
δ : Si × Ai → {0, 1} and δ (si, ai) = 1 if and only if (si, ai) = (si,1, ai,1). Note
that such change of utility functions affects neither the unique optimal action
profile nor the optimal allocation xa (s) .
One possible deviation for agent i would be to play ai,1 and announce s∗i

when si,1 is observed and stay out of the mechanism otherwise. So the following
inequality should be satisfied;X

s−i∈S−i
π (s−i|s∗i , a∗)

n
Vi

³
xa
∗
(s∗i , s−i) , s, a

∗
´
− ti (s−i|s∗i )

o
+ η

≥ 0

≥ p
¡
si,1|

¡
ai,1, a

∗
−i
¢¢ X

s−i∈S−i


π
¡
s−i|si,1,

¡
ai,1, a

∗
−i
¢¢ ·µ

Vi
¡
xa
∗
(s∗i , s−i) , (si,1, s−i) ,

¡
ai,1, a

∗
−i
¢¢

+γ − ti (s−i|s∗i )
¶ 

+(gi (ai,1)− g∗i )
≥

X
s−i∈S−i

½
π
¡
s−i|si,1,

¡
ai,1, a

∗
−i
¢¢µ Vi

¡
xa
∗
(s∗i , s−i) , (si,1, s−i) ,

¡
ai,1, a

∗
−i
¢¢

+γ − ti (s−i|s∗i )
¶¾

+
gi (ai,1)− g∗i

p
¡
si,1|

¡
ai,1, a∗−i

¢¢
where the first inequality is si’s IRinterim, the second inequality comes from the
assumption of full surplus extraction and ICai .
This implies thatX
s−i∈S−i

©
π
¡
s−i|si,1,

¡
ai,1, a

∗
−i
¢¢− π (s−i|s∗i , a∗)

ª
ti (s−i|s∗i ) ≥ γ +R1 (1)

where R1 is some number independent of γ and t (·|·) .
For each k > 1, consider a similar deviation; play ai,k and announce si

when si,k is observed and stay out of the mechanism otherwise. Then, again by
IRinterim & full surplus extraction & ICai , at least the following inequalities
must be satisfied for k = 2, ...,K.22X

s−i∈S−i
π (s−i|s∗i , a∗)

n
Vi

³
xa
∗
((s∗i , s−i)) , s, a

∗
´
− ti (s−i|s∗i )

o
+ η

≥ 0

≥ p
¡
si,k|

¡
ai,k, a

∗
−i
¢¢ X

s−i∈S−i


π
¡
s−i|si,k,

¡
ai,k, a

∗
−i
¢¢ ·µ

Vi
¡
xa
∗
(s∗i , s−i) , (si,k, s−i) ,

¡
ai,k, a

∗
−i
¢¢

−ti (s−i|s∗i )
¶ 

22Note that it could be the case that si,k = si,1. The incentive constraint is even stronger
in such a case.
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+(gi (ai,k)− g∗i )
≥

X
s−i∈S−i

π
¡
s−i|si,k,

¡
ai,k, a

∗
−i
¢¢½ Vi

¡
xa
∗
(s∗i , s−i) , (si,k, s−i) ,

¡
ai,k, a

∗
−i
¢¢

−ti (s−i|s∗i )
¾

+
gi (ai,k)− g∗i

p
¡
si,k|

¡
ai,k, a∗−i

¢¢
which leads to similar inequalities for k = 2, ...,K.X

s−i∈S−i

©
π
¡
s−i|si,k,

¡
ai,k, a

∗
−i
¢¢− π (s−i|a∗, s∗i )

ª
ti (s−i|s∗i ) ≥ Rk (2)

for some Rk independent of γ and t (·|·) .
By assumption, there exists αk > 0 such that π (·|a∗, si) =

PK
k=1 αkπ

¡·|si,k, ¡ai,k, a∗−i¢¢ .
Summing up (1) and (2), the following inequality is obtained for any t (·|·),

0 ≥ α1γ +
KX
k=1

αkRk

This cannot be satisfied for any transfer function if γ is large enough. This is a
contradiction.23

(TYPE II utility functions): By ConditionRII , it should be the case that
si,k 6= s∗i for some k. It is assumed that k = 1 without loss of generality. Choose a
set of continuous functions Vi and gi, i = 1, ..., n so that a∗ is the unique surplus
maximizing action. Modify agent i’s utility by bVi (x, si) = Vi (x, si) + γδ (si)

and some agent j’s utility (j 6= i) by bVj (x, s) = Vj (x, s) − γδ (si), where δ :
Si → {0, 1} and δ (si) = 1 if and only if si = si,1. Note that such change of
utility functions affects neither the unique optimal action profile nor the optimal
allocation xa (s) . The rest of the proof is exactly the same as the proof for TYPE
III.

Proof of Theorem 8

Proof. Since sufficiency is already proved for TYPE III utility functions, I
only need to prove necessity. Since condition RI implies RII , it should be the
case that si,k 6= s∗i for some k. It is again assumed that k = 1 without loss of
generality. Choose a set of continuous functions Vi and gi, i = 1, ..., n so that a∗

is the unique surplus maximizing action. Modify agent i’s utility by bVi (x, si) =
Vi (x, si) + γδ (si), where δ : Si → {0, 1} and δ (si) = 1 if and only if si = si,1.
Also modify agent j’s utility (j 6= i) by Vj (x, sj) = Vj (x, sj) + λvj (sj), where
vj : Sj → <+, j 6= i satisfiesPs π (s|a∗)

P
j 6=i vj (sj) >

P
s π
¡
s| ¡ai, a∗−i¢¢Pj 6=i vj (sj)

23When γ is large, Vj may become negative, thus violate the original assumption
Vj (x, s, a) ≥ 0 for all (x, s, a) . In such a case, a positive constant term can be added to
every agent’s utility function so that nonnegative utility is obtained without affecting the
proof.
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for any ai 6= a∗i . Such vj , j 6= i exists by Lemma 7. Agent j0s gj are also modified
by bgj (aj) = gi (aj)− ξδj (aj) for j 6= i, where δj : Aj → {0, 1} and δj (aj) = 1 if
and only if aj 6= a∗j . Three parameters (γ,λ, ξ) are chosen as follows. For each
γ > 0, λ is chosen large enough to make a∗ optimal among all

¡
ai, a

∗
−i
¢
. Next,

choose ξ large enough to offset any gain from vj (s) for a−i 6= a∗−i so that any
such action profile by j 6= i cannot be optimal. This guarantees that a∗ con-
tinues to be the unique surplus-maximizing action and the optimal allocation
remains the same for any level of γ > 0. The rest of the proof is again exactly
the same as before.
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Proof of Proposition 11

Proof. I first prove that (IA, IA) cannot be implementable when v is large.
Suppose that (IA, IA) is FSE-implementable. Agent i0s incentive constraint
given si = h is½
Pr ((sj , vi) = (l, v) |h) + 1

2
Pr ((sj , vi) = (h, v) |h)

¾
−
X

π (sj |h) ti (sj |h)

≥ 1
2
Pr ((sj , vi) = (l, v) |h) v −

X
π (sj |h) ti (sj |l)

So, X
π (sj |h) (ti (sj |l)− ti (sj |h)) (3)

≥ −1
2
{Pr ((sj , vi) = (l, v) |h) + Pr ((sj , vi) = (h, v) |h)} v

= −β
0v
2

Let Rh be agent i0s interim expected rent conditional on si = h. Then,X
π (sj |h) ti (sj |h) (4)

=

½
Pr ((sj , vi) = (l, v) |h) + 1

2
Pr ((sj , vi) = (h, v) |h)

¾
v −Rh

=

½µ
1

4
+ λ

¶¡
2β0 − β02

¢
+

µ
1

4
− λ

¶¡
β0 + β02

¢¾
v −Rh

Let Rl be agent i0s interim expected rent conditional on si = l. Then,X
π (sj |l) ti (sj |l) (5)

=
1

2
Pr ((sj , vi) = (l, v) |l) v −Rl

=

½µ
1

4
+ λ

¶¡
1− β0

¢2
+

µ
1

4
− λ

¶
β0
¡
1− β0

¢¾
v −Rl

Since the auctioneer extracts the full surplus of agent i, her ex-ante expected
rent from the mechanism should be exactly c. Since si is 1 or 0 with equal
probability, 12Rh +

1
2Rl = c. Note also that Rh and Rl are nonnegative because

of the individual rationality constraint. This implies that Rh, Rl ∈ [0, 2c]
From (3), (4) and (5), I can obtain X

(π (sj |h)− π (sj |l)) ti (sj |l) (6)

=
X

π (sj |h) (ti (sj |l)− ti (sj |h)) +
X

π (sj |h) ti (sj |h)−
X

π (sj |l) ti (sj |l)

≥
½
2β0 − 1
4

− λ
¡
2β0 − 1¢2¾ v − 2c
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Since π (h|h)−π (h|l) is 4λ ¡2β0 − 1¢2 and similarly π (l|h)−π (l|l) is−4λ ¡2β0 − 1¢2 ,P
(π (sj |h)− π (sj |l)) ti (sj |l) is 4λ

¡
2β0 − 1¢2 (ti (h|l)− ti (l|l)) .24 Thus the above

inequality can be simplified to be

4λ
¡
2β0 − 1¢ (ti (h|l)− ti (l|l)) ≥ ½1

4
− λ

¡
2β0 − 1¢¾ v − 2c (7)

Since
©
1
4 − λ

¡
2β0 − 1¢ª > 0, ti (h|l)−ti (l|l) goes to infinity as v goes to infinity.

Now I show that in particular ti (l|l) needs to go to −∞. By (5),
π (h|l) (ti (h|l)− ti (l|l)) + ti (l|l)

=
1

2
Pr ((sj , vi) = (l, v) |l) v −Rl

Thus,

ti (h|l)− ti (l|l) =
1
2 Pr ((sj , vi) = (l, v) |l) v −Rl − ti (l|l)

π (h|l)
Substituting this into (7) and simplifying it, I can obtain

−4λ ¡2β0 − 1¢ ti (l|l) +Rl
π (h|l) (8)

≥
©
1
4 − λ

¡
2β0 − 1¢ª2

1
4 − λ

¡
2β0 − 1¢2 v − 2c

This inequality is clearly violated for λ = 0, but satisfied for small enough
ti (l|l) for each v, which goes to −∞ as v → ∞. Moreover, for any K > 0, I
can choose v large enough so that −ti (l|l) needs to be larger than K for full
surplus extraction for any λ > 0. Now pick v so that −12 ti (l|l)− c > 0 for any
v > v and any λ > 0. Given such ti (l|l) , agent i has a profitable deviation.
She can deviate to play IS to obtain a positive surplus. After si = h, agent
i is guaranteed to receive at least 0. Agent i can receive −ti (l|l) after si = l,
which occurs with probability 1

2 . Hence agent i
0s expected total rent is at least

− 12 ti (l|l)− c, which is strictly positive by assumption. Thus (8) is not satisfied
for any λ, which is a contradiction.
The same proof can show that (NA,NA) is not implementable either (al-

though the range for which (NA,NA) is optimal
¡£
λ∗, 14

¤¢
vanishes as v →∞)

by setting A = B = 0 and using β instead of β0 in the above proof.

24

π (h|h)− π (h|l)

= 2

½ ¡
1
4
+ λ
¢©
(1− β0)2 + β02 − 2β0 (1− β0)

ª
+
¡
1
4
− λ
¢©
2β0 (1− β0)− (1− β0)2 − β02

ª ¾
= 4λ

n¡
1− β0

¢2
+ β02 − 2β0

¡
1− β0

¢o
= 4λ

¡
2β0 − 1

¢2
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