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Abstract

The choice-theoretic derivation of subjective probability proposed by

Savage (and generalized by Machina and Schmeidler) does not apply in

settings like the Ellsberg Paradox, where choice behavior reflects a distinc-

tion between risk and ambiguity. This paper formulates two representation

results—one for expected utility, the other for probabilistic sophistication—

that derive subjective probabilities but only on a “small” domain of risky

events. These events can be either specified exogenously or defined in

terms of choice behavior; in the latter case, both the values and the do-

main of probability are subjective. The analysis identifies a mathematical

structure—called a mosaic—that is appropriate for the domain of subjec-

tive probability. In contrast with an algebra or a σ-algebra, this structure

is implied by the behavioral definitions of risky events.
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1 Introduction

1.1 Objectives

Savage [20] provides foundations for the use of subjective probability in decision

making. More precisely, he axiomatizes an expected utility representation for pref-

erence over uncertain prospects—acts defined on a set S of states of nature—in

a way that does not rely on any extraneous randomization device. One compo-

nent of this representation is a probabilistic belief assigned subjectively on the

universal class of events Σ, such as the power set of all subsets of S.

Two well-known paradoxes challenge Savage’s theory. In the paradox due

to Allais [1], all events have explicit numerical probabilities, but typical prefer-

ences are not represented by expected utility. Motivated by the Allais paradox,

Machina and Schmeidler [16] extend Savage’s theory and characterize the use

of subjective probabilities separately from the expected utility functional form.

In their model of probabilistic sophistication, the decision maker ranks acts in

two stages: first, she uses subjective probabilities to translate each act into a

lottery (a distribution over outcomes), and then she ranks the induced lotteries

but not necessarily via expected utility. Note that both in Savage’s theory and in

Machina–Schmeidler’s extension, subjective probabilities are derived for all events

in the universal class Σ.

In the other paradox, due to Ellsberg [4], the decision maker is unwilling to

assign probabilities to all events in Σ. For example, consider an urn with balls of

three possible colors: B, G, and R. Suppose that the decision maker is told only

that the total number of balls is 90 and that R = 30. Then probabilities of events

in the class

R0 = {∅, {R}, {B,G}, {B,G,R}}
are known. The typical preference is to bet on events in R0 rather than on events

with imprecisely known probabilities, for example,

(i) to bet on {R} rather than on {B} because the probability of {R} is known

to be 1
3

while the probability of {B} lies between 0 and 2
3
;
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(ii) to bet on {B,G} rather than on {R,G} because the probability of {B,G}
is known to be 2

3
while the probability of {R,G} lies between 1

3
and 1.

Such preference reversal is inconsistent with the use of any subjective probabil-

ity measure p on all events because it implies that p({R}) > p({B}) but also

p({B}) + p({G}) > p({R}) + p({G}). Thus the Ellsberg Paradox shows behav-

ioral significance of the well-known distinction (Knight [13]) between risk, which

can be represented by numerical probabilities, and ambiguity, which cannot.1

In the light of his findings, Ellsberg states that “both the predictive and nor-

mative use of the Savage or equivalent postulates might be improved by avoiding

attempts to apply them in certain, specifiable circumstances where they do not

seem acceptable.” In other words, Ellsberg suggests that a theory of subjective

probability should specify a distinction between risk and ambiguity and then apply

only to risky acts and events. The main objective of this paper is to develop such

a theory as a natural extension of Savage’s and Machina–Schmeidler’s results. In

order to do so, we address several related questions:

1. How can risky events and risky acts be specified?

2. What mathematical structure does the class of risky events have?

3. How can Savage’s (or Machina–Schmeidler’s) axioms be adapted in order to

characterize expected utility maximization (or probabilistic sophistication)

on risky acts?

In some settings, one can specify an exogenous class R ⊂ Σ of risky events.2

For example, one can take R to be the class of events where probabilities are given

to the decision maker explicitly, such as R = R0 in the Ellsberg Paradox. In gen-

eral, such exogenous formulations may seem arbitrary because decision makers

1Knight uses uncertainty rather than ambiguity. We adopt Ellsberg’s terminology, in which

uncertainty is comprehensive and includes both risk and ambiguity.
2Exogenous formulations are used by Sarin and Wakker [19], by Zhang [23], and by Ep-

stein [5].
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may disagree about the identity of events to which they assign probabilities.3 To

address this concern, one can define subjectively risky events in terms of prefer-

ence. More precisely, for each event A ∈ Σ, whether A is (subjectively) risky or

(subjectively) ambiguous can be determined solely on the basis of the decision

maker’s preference over acts. This can be done via definitions due to Zhang [24]

and to Epstein–Zhang [6]. Either of these definitions derives a class of subjec-

tively risky events, written as RZ ⊂ Σ and REZ ⊂ Σ respectively, in a way that

rules out Ellsberg-type choice among subjectively risky acts. The difference be-

tween the two definitions is that the former also rules out Allais-type behavior

while the latter does not. Accordingly, Zhang uses one of Savage’s postulates to

motivate his approach, while Epstein–Zhang employ a weaker postulate due to

Machina–Schmeidler to motivate theirs.4

In order to derive subjective probabilities on a class of risky events, one needs

to identify a mathematical structure of this class. Zhang [23] argues that this

structure may be weaker than an algebra or a fortiori, a σ-algebra (used both by

Savage and by Machina–Schmeidler). For example, consider an Ellsberg-type urn

with four possible colors: B, G, R, and Y . Suppose that the decision maker is

told only that the total number of balls is 100 and that B + G = B + Y = 60.

3For example, Ellsberg observes various responses to his paradox among “sophisticated and

reasonable” people:

There are those who do not violate the [Savage] axioms, or say they won’t. . . (e.g.,

G. Debreu, R. Shlaiffer, P. Samuelson); these subjects tend to apply the axioms

rather than their intuition, and when in doubt, to apply some form of the Prin-

ciple of Insufficient Reason. Some violate the axioms cheerfully. . . (J. Marschak,

N. Dalkey); others sadly but persistently, . . . this group included L. J. Savage,

when last tested by me.

4Nehring [17] and Ghirardato–Marinacci [8] propose other definitions of ambiguity. These

definitions are less appropriate for a general theory of subjective probability because they are

at least in part motivated by considerations other than Savage’s (or Machina–Schmeidler’s)

behavioral postulates.
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Then

R1 = {∅, {B,G}, {B, Y }, {R, Y }, {G,R}, {B,G,R, Y }}

is the class of events for which probabilities are given explicitly. Accordingly,

one could take R = R1. Alternatively, one could use a class of subjectively

risky events, either RZ or REZ ; later we provide an example of preferences where

RZ = REZ = R1. However, R1 is not an algebra because it is not closed under

intersections; for instance, {B,G} ∩ {G,R} = {G} /∈ R1. Instead of an algebra,

a weaker structure—called a mosaic—can be derived for both RZ and REZ from

their definitions. This motivates modelling the use of subjective probability on

mosaics.5

One contribution of this paper is to identify mosaics as a natural structure

for the domain of subjective probability. Second, we formulate two main repre-

sentation results—one for subjective expected utility (Theorem 3.1), the other for

probabilistic sophistication (Theorem 4.1)—that derive subjective probabilities on

a given mosaic R ⊂ Σ. One can apply these results to R = RZ and to R = REZ

respectively. In this way, one can obtain a fully subjective theory of expected

utility and a fully subjective theory of probabilistic sophistication. Both theories

are constructive and derive the values and the domain of the subjective proba-

bilistic belief from preference. However, the two theories use different definitions

of risk and obtain different representations for preference over risky acts. The

former delivers an expected utility representation on RZ-measurable acts, while

the latter delivers probabilistic sophistication on REZ-measurable acts.

The noted Theorems 3.1 and 4.1 extend Savage’s and Machina–Schmeidler’s re-

sults from σ-algebras to mosaics. For the most part, their axioms are retained; the

main modification is required for Savage’s P6 (used also by Machina–Schmeidler).

In the proof, the fact that the class of risky events is a mosaic rather than a σ-

algebra necessitates constructing subjective probabilities in a way different from

5Zhang [23, 24] and Epstein–Zhang [6] employ another structure, called a λ-system, that

is motivated by the additive property of probability. This structure is more restrictive than a

mosaic and, without additional assumptions, is not implied by the definitions of RZ and REZ

(see an example in Section 4.2).
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Savage’s. We provide an explicit formula that computes subjective probabilities

for risky events from the decision maker’s “preference to bet” on these events.

This formula captures a simple intuition and is free of some of the limitations of

Savage’s approach.

Our results allow a lot of flexibility for applications. In particular, choice

among ambiguous acts is not restricted by any conditions or a fortiori, by any

parametric model, such as Choquet expected utility (Schmeidler [21]) or the multi-

ple priors model (Gilboa and Schmeidler [9]). Also, there is freedom in the identity

of the mosaic R where the use of subjective probability is axiomatized. In this

paper, we focus on applications where R = RZ or R = REZ , but in general, R
need not be equal to either of these domains.

1.2 Finite or Countable Additivity

Another strength of our model is that it does not use countable set operations,

which are essential both for Savage’s and for Machina–Schmeidler’s results. These

authors assume the universal class of events Σ to be a σ-algebra.6 However, as

Savage [p. 43] notes, it is peculiar that one should use countable unions of events

in order to derive a finitely additive probability measure.

There is another reason why the use of σ-algebras is problematic for Savage’s

theory. Prior to ranking all Σ-measurable acts, the decision maker must conceive

of all events in the class Σ. However, a σ-algebra, even when generated by simple

events, often contains very complex ones. To illustrate, let each state of the world

s be determined by an infinite sequence of coin tosses, each toss resulting in either

heads or tails. Then s ∈ S =
∏∞

k=1{Hk, Tk}. For an arbitrary finite n, identify

every A ⊂ ∏n
k=1{Hk, Tk} with the obvious event (subset in S). Call such a set

A a cylinder. Let Σ be the algebra of cylinders, and let σ(Σ) be the smallest

σ-algebra that contains Σ. It is well-known that many events in σ(Σ) are not

readily obtained via combinations of cylinders. More precisely, for any countable

6Formally, Savage takes Σ to be the power set, but his analysis is unchanged for Σ an arbitrary

σ-algebra.
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ordinal γ, there are sets in σ(Σ) that cannot be arrived at from Σ by a γ-sequence

of set-theoretic operations, each operation being a complement, a countable union

or a countable intersection (Billingsley [2, pp. 31–32]). In this sense, the class

σ(Σ) is substantially more complex than Σ.

Probability theorists avoid this complexity and do not construct measures di-

rectly on a σ-algebra; rather, the typical procedure is to describe the measure

explicitly on “simple” events in a subalgebra and then to apply a measure ex-

tension theorem (recall the construction of the Lebesgue measure on the Borel

σ-algebra). Similarly, the decision maker who conceives of all events in an algebra

Σ may be unable or unwilling to conceive of some sets in σ(Σ). Therefore, re-

liance on all events in a σ-algebra may be problematic for the normative theory of

subjective probability. Our model alleviates this problematic aspect by relaxing

Savage’s primitives and by assuming Σ to be only a finitely additive algebra. This

relaxation is possible, roughly, without changing Savage’s axioms (compare with

Gul [11] who uses axioms different from Savage’s in order to allow S to be finite).

1.3 Outline

This paper proceeds as follows. Next we introduce a version of Savage’s framework

and define the notion of a mosaic. In Section 3, we axiomatize expected utility

on R-measurable acts for an arbitrary mosaic R (Theorem 3.1) and apply this

result to R = RZ (Corollary 3.2). In Section 4, we axiomatize probabilistic

sophistication on R-measurable acts for an arbitrary mosaic R (Theorem 4.1) and

apply this result to R = REZ (Corollary 4.2). Proofs are sketched in Section 5

and are presented in detail in Appendix.

2 Preliminaries

We use a version of Savage’s framework. Given are a set S = {s, . . . } of states

of the world and a set X = {x, y, z, . . . } of outcomes or prizes; as in Savage,

no structure is imposed on the sets S and X. Also given is an algebra Σ =
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{A,B,C,D,E, . . . } of subsets of S that are called events. By definition, the

algebra Σ satisfies the following conditions:

(∗) S ∈ Σ ;

(∗∗) A ∈ Σ ⇒ ¬A ∈ Σ ;7 and

(α) A1 ∈ Σ and A2 ∈ Σ ⇒ A1 ∪ A2 ∈ Σ.

It follows that Σ is closed under finite unions and intersections. Call a union

A = ∪n
i=1Ai a partition if the events A1, A2, . . . , An are disjoint.

The algebra Σ is a σ-algebra if it is closed also under countable set operations,

that is, if it satisfies

(σ) Ai ∈ Σ for i = 1, 2, . . . ⇒ ⋃∞
i=1 Ai ∈ Σ.

By taking the primitive class of events Σ to be an algebra, we relax the assumption

that Σ is a σ-algebra used both by Savage and by Machina–Schmeidler.

Call a function f : S → X an act if it has finite range and if it is Σ-measurable,

that is, if

f−1(x) = {s ∈ S : f(s) = x} ∈ Σ for all x ∈ X.8

The restriction of the act f to an event A ∈ Σ is called a subact. For notational

simplicity, identify every x ∈ X with the constant act yielding the outcome x in

all states s ∈ S.

Denote by F = {f, g, h, . . . } the set of acts. Interpret each act f ∈ F as a

physical action that results in the outcome f(s) contingent on the realized state

of the world s ∈ S. The decision maker’s preference among such physical actions

is given as a binary relation 	 on F .

In addition to Savage’s primitives S, X, Σ, and 	, take a class R ⊂ Σ of risky

events as given and call all other events in Σ ambiguous. Say that A = ∪n
i=1Ai is

a risky partition if the event A and all the events A1, . . . , An are risky. Assume

that R satisfies the following conditions:

7¬A denotes the complement of the set A in S.
8In the literature, f is often called a simple act to reflect the fact that it has finite range.

This terminology is redundant in our model because we do not use acts other than simple.
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(∗) S ∈ R ;

(∗∗) A ∈ R ⇒ ¬A ∈ R ; and

(µ) S = ∪m
i=1Si is a risky partition ⇒ Si ∪ Sj ∈ R for all i, j = 1 . . . m.

Call such R a mosaic. Note that the mosaic R is closed under unions of elements

of any fixed risky partition of the universal event S; however, R may not be closed

under arbitrary unions and intersections. The properties of a mosaic are intuitive

if we think of R as a class of events where the decision maker assigns probabil-

ities. Moreover, mosaics—unlike more restrictive structures—accommodate the

behavioral definitions of risky events, due to Zhang [24] and Epstein–Zhang [6],

that we adopt later.

Call an act f ∈ F risky if it is R-measurable, that is, if f−1(x) ∈ R for all

x ∈ X; call f ambiguous otherwise. Denote by G ⊂ F the set of risky acts. Note

that every constant act x ∈ X is risky because S ∈ R and ∅ = ¬S ∈ R.

The fact that R may not be closed under intersections makes the following

notation useful. Given a collection of risky events E ⊂ R, let

R � E = {A ∈ R : A ∩ E ∈ R for all E ∈ E},

and let G � E be the set of (R � E)-measurable acts. In other words, G � E is the

set of such risky acts that remain R-measurable when restricted to an arbitrary

event E ∈ E . Note that if R is an algebra, then the above notation is redundant

because R = R � E and G = G � E for each collection E ⊂ R.

Given acts f, g ∈ F and an event A ∈ Σ, denote by fAg the composite act

that yields f(s) if s ∈ A and g(s) if s ∈ ¬A. Note that fAg may be ambiguous

even when the event A and the acts f and g are risky. For example, take distinct

outcomes x and y and risky events A,B ∈ R such that A ∩ B /∈ R. Then the

acts f = xBy and g = y are risky but fAg = x(A ∩ B)y is not. In order for the

composite act fAg to be risky, it is sufficient to require that A ∈ R, f ∈ G � {A}
and g ∈ G � {¬A}. Under these conditions, S can be partitioned into a finite
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number of risky events that have the form f−1(x) ∩ A or g−1(x) ∩ ¬A for x ∈ X.

As R satisfies (µ), the disjoint union

(f−1(x) ∩ A) ∪ (g−1(x) ∩ ¬A) = (fAg)−1(x)

is a risky event for each x ∈ X. Thus the act fAg is risky.

3 Subjective Expected Utility

Savage axiomatizes an expected utility representation for preference over the F
set of all acts. Next, we formulate his axioms P1–P6 (see Savage [20], Fishburn [7],

and Kreps [15] for more detailed treatments of these axioms).

Axiom P1 (Ordering). 	 is complete and transitive on F .

P1 is a standard rationality condition.

Axiom P2 (Sure-Thing Principle). For all events A ∈ Σ and for all acts

f, g, h, h′ ∈ F ,

fAh 	 gAh ⇒ fAh′ 	 gAh′. (3.1)

P2 requires that preference is separable across mutually exclusive events and

can be conditioned on any event A independently of the outcomes obtained on

¬A. Without loss of generality, this axiom can be simplified as follows: for all

events A ∈ Σ, for all acts f, g ∈ F and for all outcomes x, y ∈ X,

fAx 	 gAx ⇒ fAy 	 gAy. (3.2)

Obviously, invariance (3.2) is a special case of (3.1) where the acts h and h′ are

constant; on the other hand, both h and h′ in (3.1) have finite range, and (3.1)

follows from (3.2) by induction.

Axiom P3 (Eventwise Monotonicity). For each event A ∈ Σ, at least one of

the following statements holds simultaneously for all outcomes x, y ∈ X and for

all acts h ∈ F :
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(i) x 	 y ⇔ xAh 	 yAh ;

(ii) xAh ∼ yAh.

P3 postulates that preference over certain outcomes in X remains unchanged

when conditioned on any event A that is not viewed as virtually impossible, and

becomes degenerate when conditioned on any null event.

Axiom P4 (Weak Comparative Probability). For all events A,B ∈ Σ, for

all outcomes x � x′ and z � z′,

xAx′ 	 xBx′ ⇒ zAz′ 	 zBz′.

P4 requires that the preference to bet on the event A rather than on the event

B is independent of the stakes involved in the bets and is based exclusively on

the (subjective) relative likelihoods of A and B.

Axiom P5 (Non-degeneracy). There exist outcomes x and x′ such that x � x′.

P5 needs no explanation.

Axiom P6 (Small Event Continuity). For any outcome x and for any acts

f � g, there exists a partition S = ∪m
i=1Si such that for all i = 1 . . . m, xSif � g

and f � xSig.

P6 requires that for any outcome x and for any pair of acts f � g, the universal

set S can be partitioned into (sufficiently) small events S1, . . . , Sm. Here, the event

Si being small means that the strict preference f � g is not reversed when the

outcomes f(s), or alternatively g(s), are replaced by x for all s ∈ Si. To motivate

P6, suppose that the description of each state of the world includes infinitely

many coin tosses. Identify every finite sequence of heads and tails (s1, . . . , sn) ∈∏n
k=1{Hk, Tk} with the obvious event in S. It is intuitive that for a sufficiently

large n, the decision maker views every sequence (s1, . . . , sn) as too unlikely to

reverse the preference f � g when f(s), or alternatively g(s), are replaced by x

for all s ∈ (s1, . . . , sn).9

9This is intuitive even if the decision maker does not view the coin as fair or the coin tosses

as independent. For example, the subjective probability measure p may be exchangeable.
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Call a function p : Σ → [0, 1] a probability measure if p(S) = 1 and p is finitely

additive, that is, p(A1 ∪ A2) = p(A1) + p(A2) for all disjoint events A1, A2 ∈ Σ.

Call a probability measure p : Σ → [0, 1] convex-ranged if for each event B ∈ Σ,

the range {p(A) : A ∈ Σ, A ⊂ B} equals the interval [0, p(B)].

Finally, assume that the algebra Σ of events is a σ-algebra. Even though this

assumption is not required in order to state Savage’s axioms, it is essential for his

construction of subjective probabilities.

Theorem (Savage). Let Σ be a σ-algebra. The following two statements are

equivalent.

1. 	 satisfies P1, P2, P3, P4, P5, P6.

2. 	 is represented by expected utility

U(f) =
∑
x∈X

u(x) · p (f−1(x)) for f ∈ F , (3.3)

where u : X → R is a non-constant utility index, and p : Σ → [0, 1] is a

convex-ranged probability measure.

In this representation, the index u is unique up to a positive linear transformation,

and the probability measure p is unique.

The decision maker as portrayed by (3.3) assigns probabilities p(A) to all events

A ∈ Σ, attaches utility indices u(x) to all outcomes x ∈ X, and then ranks all acts

f ∈ F via expected utility. Thus, axioms P1–P6 provide foundations for expected

utility maximization on the set F of all acts. However, one of these axioms, the

Sure-Thing Principle, is violated by Ellsberg-type behavior and hence, may not

be universally acceptable. This motivates restricting P1–P6 and the associated

expected utility representation to the domain of risk.

3.1 Expected Utility On Risky Acts

In this section we rewrite Savage’s axioms on the set G of risky acts so that the

rewritten axioms—most importantly, the Sure-Thing Principle—do not restrict
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choice among ambiguous acts but still deliver an expected utility representation

on the set G and accordingly, a subjective probability measure on R.

It is straightforward to reformulate P1, P4, and P5.

Axiom P1(R). 	 is complete and transitive on G.

Note that P1 implies P1(R) and is equivalent to P1(Σ).

Axiom P4(R). For all risky events A,B ∈ R, for all outcomes x � x′ and

z � z′,

xAx′ 	 xBx′ ⇒ zAz′ 	 zBz′.

Obviously, any bet on a risky event, such as xAx′, is a risky act. Note that

P4 implies P4(R) and is equivalent to P4(Σ).

Axiom P5(R). There exist outcomes x and x′ such that x � x′.

P5(R) is identical to P5.

In order to rewrite the Sure-Thing Principle, one needs to ensure that all

composite acts involved in invariance (3.2) are risky. For example, it would be

inappropriate to require that for all risky events A,B ∈ R, for all risky acts

f, g,∈ G and for all outcomes x, y ∈ X,

fAx 	 gAx ⇒ fAy 	 gAy

because some of the composite acts fAx, gAx, fAy, or gAy may be ambiguous.

To guarantee that all of these acts are risky, it is sufficient to take f and g to be

R-measurable on A.

Axiom P2(R). For all risky events A ∈ R, for all risky acts f, g ∈ G � {A} and

for all outcomes x, y ∈ X,

fAx 	 gAx ⇒ fAy 	 gAy. (3.4)

P2(R) requires that preference is separable but only across mutually exclusive

risky events. More precisely, P2(R) states that preference over acts that are R-

measurable on a risky event A and constant on ¬A can be conditioned on A
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independently of the outcome obtained on ¬A. This version of separability does

not restrict choice among ambiguous acts. Note that P2 implies P2(R) and is

equivalent to P2(Σ).

Rewrite P3 as follows.

Axiom P3(R). For each risky event A ∈ R, at least one of the following

statements holds simultaneously for all outcomes x, y ∈ X and for all acts h ∈
G � {¬A}:

(i) x 	 y ⇔ xAh 	 yAh ;

(ii) xAh ∼ yAh.

This axiom requires monotonicity but only for preference over risky acts. Note

that P3 implies P3(R) and is equivalent to P3(Σ).

Finally, rewrite P6 as follows.

Axiom P6(R). For any outcome x, for any finite collection of risky events

E ⊂ R, and for any E-measurable acts f � g, there exists a risky partition

{S1, . . . , Sm} ⊂ R�E of S such that for all i = 1 . . . m, xSif � g, and f � xSig.10

P6(R) postulates existence of (sufficiently) small events S1, . . . , Sm but, unlike

P6, requires that these events belong to a particular subclass R � E ⊂ R. If R is

an algebra, then R� E = R; for example, P6(Σ) is equivalent to P6. To motivate

P6(R) in the general case when R is not an algebra, suppose that, given a finite

collection E ⊂ R and E-measurable acts, the description of each state of the world

includes infinitely many coin tosses that are viewed as risky and as independent

of all events in E .11 Then it is intuitive that

10The composite acts xSif and xSig are risky because f, g ∈ G � {¬Si} for all i = 1 . . . m. To

prove this, partition S into a finite number of risky events that have the form f−1(z) ∩ Si for

some z ∈ X and some i = 1 . . . m; here, f−1(z) ∩ Si ∈ R because f−1(z) ∈ E and Si ∈ R � E .

Then by (µ), for all x ∈ X and for all i = 1 . . . m, f−1(x) ∩ ¬Si = ∪j �=i(f−1(x) ∩ Sj) ∈ R.
11Here, independence means that observing results of coin tosses does not affect the decision

maker’s perception of the likelihoods of events in E . It should be stressed that this intuitive

notion of independence is used only to motivate P6(R) and is not a formal part of our model.
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(i) for all sequences of coin tosses (s1, . . . , sn) and for all events E ∈ E , the

intersection (s1, . . . , sn) ∩ E is a risky event because the decision maker,

who assigns probabilities p(s1, . . . , sn) and p(E), should assign probability

p(s1, . . . , sn) · p(E) to the event (s1, . . . , sn) ∩ E;

(ii) for n sufficiently large, the decision maker views each sequence (s1, . . . , sn)

as too unlikely to reverse her preference f � g when the outcomes f(s), or

alternatively g(s), are replaced by x for all s ∈ (s1, . . . , sn).

Note that P6(R) restricts both the ranking of risky acts and the class R of risky

events; in particular, P6(R) implies that R is infinite.

Call a function p : R → [0, 1] a probability measure if for all risky partitions

S = ∪m
i=1Si of the universal event,

m∑
i=1

p(Si) = 1.

Call a probability measure p : R → [0, 1] finely ranged if for any finite collection

E ⊂ R and for any ε > 0, there exists a risky partition S = ∪m
i=1Si such that

Si ∈ R � E and p(Si) < ε for all i = 1 . . . m.

Our first main result is

Theorem 3.1. Let Σ be an algebra, and let R ⊂ Σ be a mosaic. Then the

following two statements are equivalent.

1. 	 satisfies P1(R), P2(R), P3(R), P4(R), P5(R), P6(R).

2. 	 is represented on the set G by expected utility

U(f) =
∑
x∈X

u(x) · p (f−1(x)) for f ∈ G, (3.5)

where u : X → R is a non-constant utility index, and p : R → [0, 1] is a

finely ranged probability measure.

In this representation, the index u is unique up to a positive linear transformation,

and the probability measure p is unique.
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The decision maker as portrayed by (3.5) assigns probabilities to all risky

events A ∈ R, attaches utility indices to all outcomes x ∈ X, and then ranks all

risky acts f ∈ G via expected utility. Therefore, P1(R)–P6(R) provide founda-

tions for the use of probabilities on risky events and for expected utility maxi-

mization on risky acts.

The Savage Theorem is a special case of Theorem 3.1, where R = Σ and Σ

is a σ-algebra. In this case, both results use equivalent axioms and deliver the

same representations.12 Moreover, Theorem 3.1 implies that even if the algebra Σ

does not satisfy (σ), Savage’s axioms taken “as is” are necessary and sufficient for

the preference 	 over Σ-measurable acts to be represented by expected utility. In

other words, the assumption that Σ is a σ-algebra is not crucial for axiomatizing

expected utility via P1–P6.

In general, Theorem 3.1 uses axioms that are parallel to Savage’s counterparts

but applies them only to risky acts and events. Most importantly, P2(R) does not

postulate separability of preference across ambiguous events. Accordingly, in rep-

resentation (3.5), only risky events are assigned subjective probabilities and only

risky acts are ranked via expected utility. Note that choice among ambiguous acts

is not restricted by any parametric utility representation such as Choquet expected

utility (Schmeidler [21]) or maxmin expected utility (Gilboa and Schmeidler [9]).

In contrast with Savage’s result, Theorem 3.1 delivers a subjective probability

measure p that is not necessarily convex-ranged. The construction of such p

requires a new approach that is sketched in Section 5.

3.2 Fully Subjective Expected Utility

Similar to the Savage Theorem, Theorem 3.1 is formulated for a given class of

events. Accordingly, subjective probabilities in the expected utility representa-

tion (3.5) are derived on a mosaic R which is exogenous to the model. It may be

12The equivalence of representations (3.5) and (3.3) follows from the fact that in either of

them, the probability measure p is unique and the utility index u is unique up to a positive

linear transformation.
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unclear how to specify R in settings where decision makers may disagree about

the identity of events to which they assign probabilities. In order to address this

concern, one can define risky events subjectively, that is, in terms of preference

	. The following definition, due to Zhang [24], is motivated by the Sure-Thing

Principle.

Definition (Zhang). Call an event E ∈ Σ subjectively risky if for all outcomes

x, y ∈ X and for all acts f, g ∈ F ,

(i) xEf 	 xEg ⇒ yEf 	 yEg; and

(ii) fEx 	 gEx ⇒ fEy 	 gEy.

Otherwise, call E subjectively ambiguous.

This definition takes (complementary) events E and ¬E to be subjectively

risky if preference is separable across these events and can be conditioned

(i) on ¬E independently of the outcome obtained on E;

(ii) on E independently of the outcome obtained on ¬E.

Therefore, whether an event E is subjectively risky depends exclusively on the

ranking of acts that are constant on E or on ¬E. This constancy reflects the

intuition that an event being subjectively risky does not imply the same property

for subsets of this event. Note that Zhang’s definition remains intuitive even if

the decision maker is not ambiguity averse as in the Ellberg Paradox.

Let RZ ⊂ Σ denote Zhang’s class of subjectively risky events and let GZ ⊂ F
denote the associated set of subjectively risky (RZ-measurable) acts. Both RZ

and GZ are uniquely derived from the preference 	. Moreover, if 	 is reflexive,

then RZ is a mosaic, and P2(RZ) holds on GZ . (P2(RZ) follows immediately

from the definition of RZ .)

Show that RZ satisfies the properties of a mosaic.

(∗) S ∈ RZ because 	 is reflexive and hence, x 	 x for all x ∈ X.
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(∗∗) By definition, E ∈ RZ is equivalent to ¬E ∈ RZ .

(µ) Partition S into m ≥ 2 subjectively risky events {S1, . . . , Sm} ⊂ RZ . Then

for all outcomes x, y ∈ X and acts f, g ∈ F ,

x(S1 ∪ S2)f 	 x(S1 ∪ S2)g ⇒ xS1(xS2f) 	 xS1(xS2g) ⇒
S1∈RZ

yS1(xS2f) 	 yS1(xS2g) ⇒ xS2(yS1f) 	 xS2(yS1g) ⇒
S2∈RZ

yS2(yS1f) 	 yS2(yS1g) ⇒ y(S1 ∪ S2)f 	 y(S1 ∪ S2)g.

A similar argument repeated for S3, . . . , Sm ∈ REZ shows that for all out-

comes x, y ∈ X and acts f, g ∈ F ,

x(∪m
i=3Si)f 	 x(∪m

i=3Si)g ⇒ y(∪m
i=3Si)f 	 y(∪m

i=3Si)g,

or equivalently,

f(S1 ∪ S2)x 	 g(S1 ∪ S2)x ⇒ f(S1 ∪ S2)y 	 g(S1 ∪ S2)y.

Thus, S1 ∪ S2 ∈ RZ .

In general, the class RZ need not be an algebra. To illustrate this point, we

adopt Zhang’s four-color setting. For simplicity, assume that X has only two

elements, x � x′. Let S = {B,G,R, Y }, and suppose that the decision maker is

told only that the total number of balls is 100, and that B + G = B + Y = 60.

Based on this information about the composition of the urn, one can evaluate the

following lower bounds for probabilities of events:

• 0.6 for {B,G,R}, {B,R, Y }, {B,G, Y }, {B,G}, and {B, Y };

• 0.4 for {G,R, Y }, {G,R}, and {R, Y };

• 0.2 for {B,R} and {B};

• 0 for {G, Y }, {G}, {R}, and {Y }.
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Consider a ranking that reflects the above evaluations:

x � x{B,G,R}x′ ∼ x{B,R, Y }x′ ∼ x{B,G, Y }x′ ∼ x{B,G}x′ ∼ x{B, Y }x′ �
x{G,R, Y }x′ ∼ x{G,R}x′ ∼ x{R, Y }x′ �
x{B,R}x′ ∼ x{B}x′ �
x{G, Y }x′ ∼ x{G}x′ ∼ x{R}x′ ∼ x{Y }x′ ∼ x′.

For this ranking, RZ = {∅, {B,G}, {B, Y }, {R, Y }, {G,R}, {B,G,R, Y }} is not

closed under intersections. (In this example, RZ coincides with the class of events

for which probabilities are given explicitly, but in general, this need not be so.)

In order to obtain an expected utility representation on the mosaic GZ of

subjectively risky acts, one can use Theorem 3.1.

Corollary 3.2. Let 	 be a reflexive binary relation on F , and let RZ be the class

of subjectively risky events defined by Zhang. Then the following statements are

equivalent.

1. 	 satisfies P1(RZ), P3(RZ), P4(RZ), P5(RZ), P6(RZ).

2. 	 is represented on the set GZ by expected utility

U(f) =
∑
x∈X

u(x) · p (f−1(x)) for f ∈ GZ , (3.6)

where u : X → R is a non-constant utility index, and p : RZ → [0, 1] is a

finely ranged probability measure.

In this representation, the index u is unique up to a positive linear transformation,

and the probability measure p is unique.

Note that all components of representation (3.6)—the domains RZ and GZ ,

the probability measure p, and the utility index u—are derived from preference.

Therefore, Corollary 3.2 provides a fully subjective theory of expected utility. One

special case of this theory is Savage’s result; in this case, P2 implies that RZ = Σ

and that representation (3.6) holds on the set F of all acts, where it is equivalent

to (3.3). More generally, the fully subjective theory applies when P2 does not
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hold. Then, preference is still separable across subjectively risky events, these

events are assigned probabilities, and the associated subjectively risky acts are

ranked via expected utility. Thus, axioms P1(RZ), P3(RZ), P4(RZ), P5(RZ),

and P6(RZ) provide foundations for the distinction between subjectively risky

events in RZ and all other (subjectively ambiguous) events.

In general, R = RZ is not the unique (or even the largest) mosaic R such that

the preference 	 satisfies P1(R)–P6(R). The selection of RZ rather than of any

such R as the domain of subjectively risky events is motivated by Zhang’s explicit

and intuitive behavioral definition.

4 Probabilistic Sophistication

In order to accommodate Allais-type behavior, Machina and Schmeidler [16] ex-

tend Savage’s theory. They model a probabilistically sophisticated decision maker

who ranks acts in two stages: first, she uses subjective probabilities to reduce each

act to a lottery—a distribution over outcomes—and then she ranks the induced

lotteries via a risk preference which may have no expected utility representation.

The fundamental difference between expected utility maximization and prob-

abilistic sophistication is that the former implies a strong form of separability

across mutually exclusive events (such as P2 in Savage’s framework), while the

latter does not. Motivated by this observation, Machina and Schmeidler relax the

Sure-Thing Principle.

Axiom P4∗ (Strong Comparative Probability). For all partitions E = A∪B,

for all outcomes x � x′ and z � z′, and for all acts h, h′ ∈ F ,

(xAx′)Eh 	 (xBx′)Eh ⇒ (zAz′)Eh′ 	 (zBz′)Eh′. (4.1)

P4∗ states that the preference to bet on the event A rather than on the (dis-

joint) event B is independent of the stakes that are involved in such bets and
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of the outcomes that are obtained if neither A nor B occurs.13 The invariable

preference to bet on A rather than on B reflects exclusively the decision maker’s

belief that A is at least as probable as B. Accordingly, P4∗ does not rule out

non-linear risk preferences.14

Savage’s axioms other than P2 remain intuitive for probabilistically sophisti-

cated behavior. This motivates adopting P1, P3, P4∗, P5, P6 as an axiomatic

foundation for probabilistic sophistication. Before stating Machina–Schmeidler’s

representation result, we need a few preliminaries.

A lottery l : X → [0, 1] is a probability distribution that has a finite support

in X. For every Y ⊂ X, let l(Y ) =
∑

x∈Y l(x). Denote by L = {l, . . . } the set of

lotteries endowed with the metric

‖l − l′‖ =
∑
x∈X

|l(x) − l′(x)| for l, l′ ∈ L. (4.2)

Define a mixture τ l + (1 − τ)l′ of lotteries l and l′ with a weight τ ∈ [0, 1] by

(τ l + (1 − τ)l′)(x) = τ l(x) + (1 − τ)l′(x) for x ∈ X.

Call a function V : L → R mixture continuous if for all lotteries l, l′ ∈ L, V (τ l +

(1 − τ)l′) is continuous with respect to the weight τ ∈ [0, 1].

Given a ranking of outcomes 	X , define a notion of first-order stochastic

dominance in L. For all x ∈ X, let

Yx = {y ∈ X : y 	X x}.

Say that a lottery l weakly dominates l′, written l � l′, if l(Yx) ≥ l′(Yx) for all

x ∈ X. Say that l strictly dominates l′, written l � l′, if l(Yx) ≥ l′(Yx) for all

13The combination of P2 and P4 implies P4∗ as follows:

(xAx′)Eh 	 (xBx′)Eh ⇒
P2

(xAx′)Ex′ 	 (xBx′)Ex′ ⇒
P4

(zAz′)Ez′ 	 (zBz′)Ez′ ⇒
P2

(zAz′)Eh′ 	 (zBz′)Eh′.

Conversely, P4∗ implies P4 as a special case for E = S, but does not imply P2 (providing that

X has at least three elements).
14P4∗ requires only that the risk preferences are monotonic.
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x ∈ X and l(Yx) > l′(Yx) for some x ∈ X. Call a function V : L → R weakly

monotonic if for all l, l′ ∈ L,

l � l′ ⇒ V (l) ≥ V (l′); (4.3)

call V strictly monotonic if for all l, l′ ∈ L, V satisfies (4.3) and

l � l′ ⇒ V (l) > V (l′). (4.4)

Throughout, we will use first-order stochastic dominance and the associated no-

tions of monotonicity without specifying the ranking 	X explicitly; this ranking

will be clear from the context.

Given a probability measure p : Σ → [0, 1] and an act f ∈ F , define a lottery

[f ]p ∈ L by

[f ]p(x) = p(f−1(x)) for x ∈ X;

say that [f ]p is induced by f .

Finally, assume that the algebra Σ of events is a σ-algebra. Even though

this assumption is not required in order to state P4∗ (and all the other axioms),

it is essential for the construction of subjective probabilities used by Machina–

Schmeidler.15

Theorem (Machina–Schmeidler). Let Σ be a σ-algebra. Then the following

two statements are equivalent.

1. 	 satisfies P1, P3, P4∗, P5, P6.

2. 	 is represented by

U(f) = V ([f ]p) for f ∈ F , (4.5)

where p : Σ → [0, 1] is a convex-ranged probability measure, and the util-

ity function V : L → R is non-constant, strictly monotonic, and mixture

continuous.

15The construction is basically the same as in Savage.
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In this representation, the probability measure p is unique.

The decision maker as portrayed by (4.5) assigns subjective probabilities to

all events A ∈ Σ and translates all acts f ∈ F into lotteries [f ]p which she ranks

via a mixture continuous and strictly monotonic function V . In other words, V

represents the decision maker’s risk preference over lotteries. The Savage Theo-

rem accommodates the special case where V has the expected utility form but in

general, the risk preference may have no expected utility representation.16 Thus,

P1, P3, P4∗, P5, P6 relax Savage’s axioms and provide foundations for proba-

bilistic sophistication on the set F of all acts. However, Ellsberg-type behavior is

not probabilistically sophisticated and violates Strong Comparative Probability.

This motivates restricting P4∗ and the associated characterization of probabilistic

sophistication to the domain of risk.

4.1 Probabilistic Sophistication on Risky Acts

Next, we rewrite P4∗ for risky (R-measurable) acts in order to reflect the use of

subjective probabilities for risky events without restricting choice among ambigu-

ous acts.

Axiom P4∗(R). For all risky partitions E = A ∪ A′ = B ∪ B′, for all outcomes

x � x′ and z � z′, and for all acts h, h′ ∈ G � {¬E},

(xAx′)Eh 	 (xBx′)Eh ⇒ (zAz′)Eh′ 	 (zBz′)Eh′. (4.6)

P4∗(R) states that the preference to bet on the risky event A rather than on

the risky event B is independent of the stakes that are involved in such bets and of

the (R-measurable) subact that is obtained on the risky event ¬E when neither

A nor B occurs.17 Accordingly, P4∗(R) does not restrict preference to bet on

16See Grant [10] for a model of probabilistic sophistication where even monotonicity of risk

preference is relaxed.
17Note that unlike Machina–Schmeidler’s P4∗, P4∗(R) does not require that A and B are

disjoint. If R is an algebra, then the two formulations are equivalent. In general, the requirement
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ambiguous events. Neither does P4∗(R) rule out non-linear risk preferences over

lotteries induced by risky acts.

In order to state our second main representation, we need a few preliminaries.

Given a finite subset Y ⊂ X, denote by L(Y ) the set of lotteries in L that have

support in Y . Denote by Lp the set of lotteries that are induced by risky acts via

a probability measure p : R → [0, 1]:

Lp = {l ∈ L : l = [f ]p for some f ∈ G}.

Consider a binary relation 	1 on Lp. Call 	1 strictly monotonic if for all lotteries

l, l′ ∈ Lp, l � l′ and l � l′ imply l 	1 l′ and l �1 l′ respectively. Call 	1

continuous if for all finite Y ⊂ X and for all lotteries l ∈ L(Y ) ∩ Lp, the sets

{l′ ∈ L(Y )∩Lp : l′ 	1 l} and {l′ ∈ L(Y )∩Lp : l′ �1 l} are closed in L(Y )∩Lp.

Theorem 4.1 (Part I). Let Σ be an algebra, and let R ⊂ Σ be a mosaic. Then

the following two statements are equivalent.

1. 	 satisfies P1(R), P3(R), P4∗(R), P5(R), P6(R).

2. 	 on the set G is represented by

f 	 g ⇔ [f ]p 	1 [g]p for f, g ∈ G, (4.7)

where p : R → [0, 1] is a finely ranged probability measure, and the binary

relation 	1 on Lp is non-degenerate, complete, transitive, continuous, and

strictly monotonic.

that A and B are disjoint is not required in order to motivate the axiom, but leads to unnecessary

technical complications. Note also that P4∗(R) preserves all the natural logical connections to

other axioms. P4∗(R) is implied by the combination of P2(R) and P4(R). Conversely, P4∗(R)

implies P4(R) as a special case for E = S, but does not imply P2(R) (providing that X has

at least three elements). Finally, P4∗ implies P4∗(R) and is equivalent to P4∗(Σ). In order to

prove this, let E′ = E ∪ (A ∩ B), h′′ = x(A ∩ B)h and h′′′ = x′(A ∩ B)h′; then

(xAx′)Eh 	 (xBx′)Eh ⇒ (x(A \ B)x′)E′h′′ 	 (x(B \ A)x′)E′h′′ ⇒ {P4∗}
(z(A \ B)z′)E′h′′′ 	 (z(B \ A)z′)E′h′′′ ⇒ (zAz′)Eh′ 	 (zBz′)Eh′.

On the other hand, P4∗ is a special case of P4∗(Σ) where A = B′ and B = A′.
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In this representation, the probability measure p and the strictly monotonic binary

relation 	1 are unique.

Similar to Theorem 3.1, Theorem 4.1(I) models behavior only for risky acts,

and derives subjective probabilities only for risky events. In representation (4.7),

the probabilities are used to translate risky acts f ∈ G into lotteries [f ]p ∈ Lp, and

the induced lotteries are ranked via the continuous and strictly monotonic weak

order 	1 rather than via expected utility. Therefore, P1(R), P3(R), P4∗(R),

P5(R), P6(R) provide foundations for probabilistic sophistication on risky acts.

If R = Σ and Σ is a σ-algebra, then Theorem 4.1(I) becomes a reduced version

of the Machina–Schmeidler Theorem. In this case, both results use equivalent

axioms, and the function V in (4.5) represents the risk preference 	1 in (4.7).

Moreover, Theorem 4.1(I) shows that Machina–Schmeidler’s axioms taken “as is”

characterize a version of probabilistic sophistication over Σ-measurable acts even

if the algebra Σ does not satisfy (σ).

In general, the axioms in Theorem 4.1(I) are parallel to Machina–Schmeidler’s

counterparts but apply only to risky acts and events. Most importantly, P4∗(R)

does not restrict the preference to bet on ambiguous events. Accordingly, only

risky events A ∈ R are assigned subjective probabilities, only risky acts f ∈ G
are translated into lotteries, and only lotteries [f ]p ∈ Lp that are induced by

risky acts are ranked by the risk preference 	1. Finally, in (4.7), the probability

measure p need not be convex-ranged, and no utility representation V is specified

for the risk preference 	1. Thus, representation (4.7) constitutes a notion of

probabilistic sophistication different from, albeit closely related to the one due to

Machina–Schmeidler. In (4.7), the risk preference is retained as a binary relation

	1 on a subdomain Lp ⊂ L, while in (4.5) the risk preference on the set L of

all lotteries is represented by a utility function V . It seems intuitive that risk

preference in the general case might be described by a binary relation rather than

by a utility function. In fact, any utility representation for the risk preference

might restrict the use of probabilities and hence, be viewed as excess baggage for

a general theory of probabilistic sophistication.
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On the other hand, a utility function for the ranking 	1 may be desirable for

analytical tractability. It is an open question whether conditions of Theorem 4.1(I)

imply that such a utility function exists. In particular, one cannot use Machina–

Schmeidler’s construction of V (see an example in Section 5.2).

One way to obtain a utility representation for the risk preference 	1 is to

impose a stronger continuity axiom on the underlying preference over risky acts.

Axiom P6∗(R) (Small Event Uniform Continuity). For any outcome x, for

any finite collection E ⊂ R, for any E-measurable acts f � g, there exists a risky

partition {S1, . . . , Sm} ⊂ R� E of S such that for all i = 1 . . . m and for all risky

acts h ∈ G � {¬Si},

h(S) ⊂ f(S) and h 	 f ⇒ xSih � g,

h(S) ⊂ g(S) and h � g ⇒ xSih ≺ f.

P6(R) is a special case of P6∗(R) where h = f or h = g. Both axioms require

that S can be partitioned into (sufficiently) small risky events S1, . . . , Sm that

belong to the subclass R� E ⊂ R. However, the two axioms use slightly different

notions of small events. In P6∗(R), Si is small if

(i) not only for h = f (as in P6(R)) but for any risky act h 	 f that has range

h(S) ⊂ f(S) and is R-measurable on ¬Si, replacing h(s) by x on Si does

not reverse the strict preference h � g;18

(ii) not only for h = g (as in P6(R)) but for any risky act h � g that has range

h(S) ⊂ g(S) and is R-measurable on ¬Si, replacing h(s) by x on Si does

not reverse the strict preference f � h.

In P6∗(R), the act h is allowed to vary while the partition S = ∪m
i=1Si is fixed. In

this way, P6∗(R) reflects an intuitive notion of uniform continuity of the preference

	 with respect to small risky events. Note that both P6(R) and P6∗(R) require

that small events belong to the subclass R � E . This requirement is intuitive if

18The range of h is restricted to a finite set in order to avoid situations when the fixed outcome

x can replace unboundedly good outcomes h(s) on s ∈ Si.
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the description of the world includes infinitely many coin tosses that are risky and

independent of all events in E .

Call a function V : Lp → R uniformly continuous if for each finite Y ⊂ X, V

is uniformly continuous on Lp ∩ L(Y ).

Theorem 4.1 (Part II). Let Σ be an algebra and let R ⊂ Σ be a mosaic. Then

the following two statements are equivalent.

1. 	 satisfies P1(R), P3(R), P4∗(R), P5(R), P6∗(R).

2. 	 on the set G is represented by

U(f) = V ([f ]p) for f ∈ G, (4.8)

where p : R → [0, 1] is a finely ranged probability measure, and the utility

function V : Lp → R is non-constant, strictly monotonic, and uniformly

continuous.

In this representation, the probability measure p is unique.

Therefore, strengthening P6(R) to P6∗(R) is sufficient for the risk preference

	1 to have a utility representation V . Note that the expected utility functional

form is strictly monotonic and uniformly continuous; therefore, the expected util-

ity representation (3.5) is a special case of (4.8). Another special case of (4.8) is

Machina–Schmeidler’s (4.5).19 Similar to (4.5), the utility representation (4.8) on

G need not have any particular parametric form.

4.2 Fully Subjective Probabilistic Sophistication

Theorem 4.1 derives subjective probabilities on the class of risky events R that

is exogenous to the model. The exogenous formulation may seem problematic if

decision makers may disagree about the identity of events to which they assign

19If the function V : L → [0, 1] is strictly monotonic, then the properties of mixture continuity

and uniform continuity are equivalent.
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probabilities. This motivates defining risky events subjectively, that is, in terms

of preference.

Section 3.2 provides one such definition, due to Zhang, that takes an event

E ∈ Σ to be subjectively risky if for all outcomes x, y ∈ X and for all acts

f, g ∈ F ,

xEf 	 xEg ⇒ yEf 	 yEg; and

fEx 	 gEx ⇒ fEy 	 gEy.

In general, these requirements may be too demanding. For example, the decision

maker may be probabilistically sophisticated on the domain F of all acts but has

a non-linear risk preference. In this case, subjective probabilities for all events can

be derived from preference in Σ but some events will not satisfy Zhang’s definition.

Consider instead the following definition that is motivated by Strong Com-

parative Probability rather than by the Sure-Thing Principle. Call acts f, g ∈ F
complementary bets if there exists a partition E = A ∪ B, outcomes z � z′, and

an act h ∈ F such that f = (zAz′)Eh and g = (zBz′)Eh.

Definition (Epstein–Zhang). An event E ∈ Σ is called subjectively risky if for

all outcomes x, y ∈ X, and for all acts f, g ∈ F that are complementary bets,

(i) xEf 	 xEg ⇒ yEf 	 yEg; and

(ii) fEx 	 gEx ⇒ fEy 	 gEy.

Otherwise, E is called subjectively ambiguous.

In other words, this definition takes events E and ¬E to be subjectively risky

if for all events A,B ∈ Σ,

(i) the preference to bet on A ∩ ¬E rather than on B ∩ ¬E is independent of

the outcome obtained on E;

(ii) the preference to bet on A ∩ E rather than on B ∩ E is independent of the

outcome obtained on ¬E.
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This definition does not require separability across E and ¬E for preference over

acts other than complementary bets because such a stronger form of separability

may reflect a non-linear risk preference rather than the decision maker’s unwill-

ingness to assign probabilities.20 Note that Epstein–Zhang’s definition uses only

acts that are constant on E or alternatively, on ¬E. Therefore, subsets of a

subjectively risky event may be subjectively ambiguous.

Denote by REZ ⊂ Σ and GEZ ⊂ F the class of subjectively risky events defined

by Epstein–Zhang and the associated set of subjectively risky (REZ-measurable)

acts. The domains REZ and GEZ are uniquely determined by preference. By

definition, REZ is a mosaic (the proof is the same as in Zhang’s case, the only

difference being that f and g are required everywhere to be complementary bets),

and P4(REZ) implies P4∗(REZ).21 The four-color example in Section 3.2 illus-

trates that REZ need not be an algebra.

Thus, in order to characterize probabilistic sophistication on subjectively risky

acts in GEZ , one can use Theorem 4.1.

Corollary 4.2. Let 	 be a reflexive binary relation on F , and let REZ be the

mosaic of subjectively risky events defined by Epstein–Zhang. Then the following

two statements are equivalent.

1. 	 satisfies P1(REZ), P3(REZ), P4(REZ), P5(REZ), P6(REZ);

2. 	 is represented on the set GEZ by

f 	 g ⇔ [f ]p 	1 [g]p for f, g ∈ GEZ , (4.9)

20Epstein–Zhang’ definition relaxes Zhang’s; however, the two definitions are equivalent if X

has only two elements x � x′, in which case any acts f, g ∈ F are complementary bets.
21For all events E ∈ REZ , for all subjectively risky partitions E = A ∪ A′ and E = B ∪ B′,

for all outcomes x � x′ and z � z′, and for all acts h, h′ ∈ GEZ � {E}, use Epstein–Zhang’s

definition and P4(REZ) to obtain:

(xAx′)Eh 	 (xBx′)Eh ⇒ (xAx′)Ex′ 	 (xBx′)Ex′ ⇒ {P4(REZ)}
(zAz′)Ez′ 	 (zBz′)Ez′ ⇒ (zAz′)Eh′ 	 (zBz′)Ez′.
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where p : REZ → [0, 1] is a finely ranged probability measure, and the binary

relation 	1 on Lp is non-degenerate, complete, transitive, continuous, and

strictly monotonic.

In this representation, the probability measure p and the strictly monotonic binary

relation 	1 are unique.

Moreover, 	 satisfies the additional axiom P6∗(REZ) if and only if the risk

preference 	1 is represented by a utility function V : Lp → R that is strictly

monotonic and uniformly continuous.

Note that all components of representation (4.9)—the domains REZ and GEZ ,

the probability measure p, and the risk preference 	1—are derived from prefer-

ence. Therefore, Corollary 4.2 provides a fully subjective theory of probabilistic

sophistication. One special case of this theory is Machina–Schmeidler’s result;

in this case, P4∗ implies that REZ = Σ and that representation (4.9) holds on

the set F of all acts, where it is equivalent to (4.5). More generally, the theory

applies when P4∗ does not hold. In these situations, subjectively risky events in

REZ are assigned probabilities, and the associated subjectively risky acts in GEZ

are translated into lotteries that are ranked by a continuous and monotonic risk

preference. Thus, axioms P1(REZ), P3(REZ), P4(REZ), P5(REZ), and P6(REZ)

provide foundations for the distinction between subjectively risky events in REZ

and all other (subjectively ambiguous) events. This distinction, unlike the one

characterized in Section 3.2, does not exclude Allais-type behavior.

Besides REZ , there may be other mosaics R such that preference 	 satisfies

P1(R), P3(R), P4∗(R), P5(R), and P6(R). The selection of REZ rather than of

any such R as the domain of subjectively risky events is motivated by Epstein–

Zhang’s explicit and intuitive behavioral definition.

To relate Corollary 4.2 to the main representation result in Epstein–Zhang,

consider a special case of mosaics. Call REZ a (finitely additive) λ-system if it

satisfies

(λ) A1 ∈ REZ , A2 ∈ REZ and A1 ∩ A2 = ∅ ⇒ A ∪ B ∈ REZ .
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The property (λ) strengthens (µ) and requires that REZ is closed under arbitrary

disjoint unions. Without additional assumptions, the class REZ (or similarly, RZ)

may not be a λ-system. For example, let S = {B,G,R}, X = {x, x′}, and let the

decision maker have the following ranking:

x � x{G,R}x′ � x{B,R}x′ � x{B,G}x′ � x{G}x′ � x{R}x′ � x{B}x′ � x′.

Then the complementary events {B} and {G,R} are subjectively ambiguous be-

cause of the preference reversal from x{G}x′ � x{R}x′ to x{B,R}x′ � x{B,G}x′.

However, the events {G} and {B,R}, {R} and {B,G} are subjectively risky. It

follows that

RZ = REZ = {∅, {B,R}, {B,G}, {R}, {G}, {B,G,R}}

is not closed under disjoint unions. In this example, the class REZ is a mosaic

but not a λ-system.

It is arguably intuitive that the decision maker, who assigns probabilities p(A)

and p(B) to disjoint events A and B, also assigns the sum p(A) + p(B) to the

union A ∪ B. Motivated by this intuition, Epstein and Zhang impose additional

conditions on preference that guarantee that REZ is a λ-system.22 It is, however,

an open question whether the simple intuition underlying the λ-system structure

for risky events has an equally simple behavioral foundation.

Besides the difference in structure for the class of risky events, Corollary 4.2

differs substantially from Epstein–Zhang in the axioms adopted. Roughly, the

corollary dispenses with two of their arguably least appealing axioms (Monotone

Continuity and Strong Partition Neutrality).

5 Sketch of Proofs

In this section we discuss the main aspects that differentiate the proofs of Theo-

rems 3.1 and 4.1 from those of Savage and Machina–Schmeidler. First, we focus

22In fact, their conditions are too weak and their theorem is not valid as stated. To correct

Epstein–Zhang’s theorem, strengthen their Axiom 4 so that, in their notation, An and Bm can

vary over all of Σ but not necessarily over A.
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on the construction of subjective probabilities for risky events.

5.1 Construction of Subjective Probability

Analogously to de Finetti [3] and Savage [20], we seek a probability measure p

that represents the comparative likelihood relation 	0. For arbitrary risky events

A and B, the relation A 	0 B is defined in terms of preference by:

A 	0 B ⇔ xAx′ 	 xBx′ for all outcomes x � x′,

and is interpreted as A being subjectively at least as likely as B. The list of axioms

imposed in Theorem 3.1, or alternatively, in Theorem 4.1, implies that the relation

	0 has properties analogous to those of de Finetti’s qualitative probability and to

Savage’s fineness and tightness. However, the fact that the mosaic R is not closed

under intersections complicates the formulation and the formal proof of these

properties in Appendix.

The construction of subjective probability by Savage (or by Fishburn [7]) relies

on partitioning the state space S into an arbitrarily large number N of equiprob-

able events. Such equipartitions need not exist if the domain of risky events is

a mosaic or even a finitely additive algebra (see an example in Section 5.3). In

the absence of equipartitions, we propose the following construction of the unique

finely ranged probability measure p : R → [0, 1] that represents 	0 on R. Like

Savage’s, our construction is explicit and captures a simple intuition.

Fix an arbitrary risky event A ∈ R. Say that a risky partition S = ∪m
i=1Si is

finer than A if A �0 Si for all i = 1 . . . m, that is, if every Si is subjectively less

likely than A. Among all risky partitions of S finer than A, take one that has a

minimal number of elements. Let ν(A) be this minimal number; let ν(A) = +∞
if there are no risky partitions of S finer than A. The subjective probability p(A)

is constructed in terms of the function ν as follows:

p(A) = sup
A=A1∪···∪An

Ai∈R and Ai∩Aj=∅

{
n∑

i=1

1

ν(Ai)

}
. (5.1)

In other words, the least upper bound is taken over all risky partitions of A.
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To motivate formula (5.1), suppose that some finely ranged probability mea-

sure p does represent 	0. Fix an arbitrary risky event A ∈ R with p(A) > 0. Let

N be the unique integer such that

1
N

< p(A) ≤ 1
N−1

.

Then any risky partition of S finer than A must have at least N elements because

all events in such a partition have probabilities that are strictly smaller than 1
N−1

but add up to unity. On the other hand, fine-rangedness of p implies that there

exists an N -element risky partition finer than A.23 It follows that ν(A) = N .

Therefore,
1

ν(A)
< p(A) ≤ 1

ν(A) − 1
. (5.2)

For the fixed risky event A, vary a number n and a risky partition A = ∪n
i=1Ai. The

sums
∑n

i=1
1

ν(Ai)
are lower bounds for p(A) =

∑n
i=1 p(Ai). Moreover, these sums

become arbitrarily close to p(A) for sufficiently fine risky partitions because (5.2)

implies that the ratios 1
ν(Ai)

/
p(Ai) approach 1 as the probabilities p(Ai) approach

zero. This argument suggests constructing p(A) via formula (5.1).

Even though the above motivation for formula (5.1) is relatively transparent,

it takes a lot of work in Appendix to show that the function p : R → [0, 1] given

by (5.1) is indeed a finely ranged probability measure that represents 	0.

23By fine-rangedness, it is possible to partition S into risky events {S1, . . . , Sm} such that

p(Si) < p(A) − 1
N for all i = 1 . . . m. Construct indices 0 < k1 < · · · < kN−1 < m and risky

events E1, . . . , EN−1, EN by

S = S1 ∪ · · · ∪ Sk1︸ ︷︷ ︸
E1

∪ · · · ∪ SkN−2+1 ∪ · · · ∪ SkN−1︸ ︷︷ ︸
EN−1

∪SkN−1+1 ∪ · · · ∪ Sm︸ ︷︷ ︸
EN

so that for all i = 1 . . . N − 1, 1
N < p(Ei) < p(A). Then p(EN ) < 1 − (N − 1) · 1

N = 1
N < p(A),

and hence, the risky partition S = ∪N
i=1Ei is finer than A. Note that this argument relies

on partitioning S into approximately equiprobable risky events Ei’s. In this sense, it might

reflect approximate symmetry considerations (see Savage [pp. 63–67] for discussion of the role

of symmetry in the foundations of probability).
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5.2 Utility Representations for Risk Preference

The next step after the construction of a subjective probability measure p is to

translate the preference 	 over risky acts into a ranking 	1 of lotteries and to

obtain a suitable utility representation for 	1. The natural definition of the risk

preference 	1 used by Savage and by Machina–Schmeidler can be adapted to our

setting as follows:

l 	1 l′ ⇔ l = [f ]p and l′ = [g]p for some risky acts f 	 g. (5.3)

In order to find a representation for the ranking 	1, one could attempt to use two

well-known results, due to von Neumann–Morgenstern and Machina–Schmeidler

respectively.

Say that 	1 is mixture continuous if for all lotteries l, l′, l′′ ∈ L, the sets

{τ ∈ [0, 1] : τ · l + (1 − τ) · l′ 	1 l′′} and {τ ∈ [0, 1] : τ · l + (1 − τ) · l′ �1 l′′}

are closed in [0, 1]. Say that 	1 is mixture separable if for all lotteries l, l′, l′′ ∈ L,

l 	1 l′ ⇒ 1
2
l + 1

2
l′′ 	1

1
2
l′ + 1

2
l′′. (5.4)

Invariance (5.4) is a special case of von Neumann–Morgenstern’s Independence

Axiom.

1. A binary relation 	1 on L is complete, transitive, mixture continuous, and

mixture separable if and only if 	1 is represented by expected utility

U(l) =
∑
x∈X

u(x) · l(x) for l ∈ L,

where u : X → R is a utility index.

Proof. See Herstein–Milnor [12].

2. A binary relation 	1 on L is complete, transitive, mixture continuous, and

strictly monotonic if and only if 	1 is represented by V : L → R that is

mixture continuous and strictly monotonic.
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Proof. See Steps 4 and 5 in Machina–Schmeidler’s proof of their Theorem

2.

Note that while the latter representation is more general than the former, both

require that the relation 	1 be complete on the set L of all lotteries. In the proofs

of Savage and Machina–Schmeidler, where R = Σ is a σ-algebra and p : Σ → [0, 1]

is convex-ranged, the risk preference 	1 defined by (5.3) is complete on L because

for any l ∈ L there exists f ∈ F such that l = [f ]p. However, this argument fails

in our model because the set Lp ⊂ L of lotteries induced by risky acts may be

smaller than L in which case the risk preference 	1 defined by (5.3) is complete

on Lp but not on all of L.

In order to apply the above representations results, we extend 	1 from Lp,

which is dense in L, to all of L by continuity. We show that the list of axioms

imposed in Theorem 3.1 guarantees that the risk preference 	1 defined by (5.3)

has a unique complete, transitive, mixture continuous, and mixture separable

extension to all of L. The von Neumann–Morgenstern theorem applied to this

extension delivers the expected utility representation (3.5).

However, the weaker list of axioms imposed in Theorem 4.1(I) does not guar-

antee that the risk preference 	1 defined by (5.3) has a complete, transitive, and

mixture continuous extension to all of L. For example, let S =
∏∞

k=1{Hk, Tk}.
Identify every A ⊂ ∏n

k=1{Hk, Tk} with a natural event in S, and let Σ be the

algebra of all such cylinders of finite ranks n ≥ 0 (if n = 0, then A = S or A = ∅).
Let R = Σ, and define a finely ranged probability measure p : R → [0, 1] by

p(A) =
|A|
2n

for A ⊂
n∏

k=1

{Hk, Tk}. (5.5)

In other words, suppose that coin tosses are viewed as fair and independent.

Then the range of p : R → [0, 1] is the set of all dyadic rational values, which

is not convex. In particular, there is no event A ∈ R such that p(A) = 1
3
. Let

X = {x, y, z}. Suppose that the risk preference 	1 on Lp is represented by the
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l(x)

l(z)l(y)

x

z y

x

z y1
2
y + 1

2
z

1
3
x + 2

3
z

Figure 1: Non-extendable risk preference

utility function

V (l) =




3l(x) + 2l(y) − 1 if 1 > 3l(x) + 2l(y) ≥ 3l(x) + l(y)

3l(x)+2l(y)−1
1−3l(x)

= 1 + 2 · 3l(x)+l(y)−1
1−3l(x)

if 3l(x) + 2l(y) ≥ 1 ≥ 3l(x) + l(y)

3l(x) + l(y) if 3l(x) + 2l(y) ≥ 3l(x) + l(y) > 1.

This function is well-defined on Lp because l(x) �= 1
3

for any l ∈ Lp. Figure 1

illustrates the indifference curves of 	1. It is clear from this illustration that

the risk preference 	1 on Lp is non-degenerate, complete, transitive, continuous

and strictly monotonic, that is, 	1 satisfies all conditions of Theorem 4.1(I).

Accordingly, the ranking 	 of G represented by

f 	 g ⇔ [f ]p 	1 [g]p,

satisfies P1(R), P3(R), P4∗(R), P5(R), and P6(R). However, 	1 cannot be

extended to a mixture continuous weak order on the set L of all lotteries. Suppose

on the contrary that such an extension exists. Then by mixture continuity,

1
2
y + 1

2
z 	1

1
3
x + 2

3
z 	1 y

because 1
2
y + 1

2
z 	1 τ · x + (1− τ) · z for all τ < 1

3
and τ · x + (1− τ) · z 	1 y for

all τ > 1
3
. By transitivity, 1

2
y + 1

2
z 	1 y, which contradicts V (1

2
y + 1

2
z) < V (y).
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In the above example, Machina–Schmeidler’s analysis does not apply, and

the risk preference is retained as a binary relation 	1 on Lp.
24 Note that the

example of a non-extendable risk preference is analogous to well-known examples

in calculus where a function continuous on a dense subset of a metric space has no

continuous extension to the whole space. These examples motivate the use of a

notion of uniform continuity to ensure existence of continuous extensions. P6∗(R)

provides an appropriate form of uniform continuity for rankings of risky acts.

When this axiom holds together with the other conditions of Theorem 4.1, the

induced risk preference has a unique complete, transitive, and mixture continuous

extension from Lp to L. One can obtain a utility representation for this extension

via Machina–Schmeidler’s result.

5.3 Subjective Probability without Equipartitions

Finally, we provide an example where no equiprobable events exist. Adopt the

coin-tossing setting, where S =
∏∞

k=1{Hk, Tk}, Σ is the set of all cylinders, and

R = Σ. Construct a finely ranged probability measure p∗ : R → [0, 1] that assigns

different probabilities to any two different events in R.

Define p∗ in several steps. For each sequence (s1, . . . , sn) ∈∏n
k=1{Hk, Tk}, let

p∗(s1, . . . , sn) = π1(s1) · π2(s2) · · · · · πn(sn),

where πi is a probability measure on the two-element set {Hi, Ti}. In other words,

suppose that coin tosses are viewed as independent though not as identically

distributed. Construct π1, π2, . . . inductively so that for all n = 0, 1, 2, . . . and for

all cylinders A and B of rank n,

A �= B ⇒ p∗(A) �= p∗(B). (5.6)

For n = 0, p∗(S) �= p∗(∅), and (5.6) holds. Next, suppose that (5.6) holds for

all cylinders of rank n. Fix arbitrary cylinders A and B of rank n + 1 such that

24Our intuition is that 	1 may have no utility representation on Lp, but we have no formal

counterexample.
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A �= B. They can be written as

A = (AH ∩ Hn+1) ∪ (AT ∩ Tn+1)

B = (BH ∩ Hn+1) ∪ (BT ∩ Tn+1),

where AH , AT , BH , BT are cylinders of rank n. The inequality A �= B implies that

either AH �= BH , or AT �= BT , or both. Note that p∗(A) = p∗(B) holds only if

(p∗(AH) − p∗(BH)) · πn+1(Hn+1) + (p∗(AT ) − p∗(BT )) · πn+1(Tn+1) = 0. (5.7)

This equation is non-trivial because by (5.6), either p∗(AH) �= p∗(BH), or p∗(AT ) �=
p∗(BT ), or both. Hence, there exists at most one solution to the system of two

linear equations (5.7) and

πn+1(Hn+1) + πn+1(Tn+1) = 1. (5.8)

As the number of cylinders of rank n + 1 is finite, there is only a finite number of

probability measures πn+1’s that satisfy (5.7) for some cylinders A �= B of rank

n+1. Thus it is possible to choose πn+1 so that (5.6) holds for all cylinders of rank

n + 1. To ensure that p∗ : R → [0, 1] is finely ranged, the values πn+1(Hn+1) and

πn+1(Tn+1) can be taken in the interval [0.4, 0.6] so that p∗(s1, . . . , sn) ≤ 0.6n. By

induction, there exists a finely ranged measure p∗ : R → [0, 1] that satisfies (5.6)

for all cylinders A and B.25

It is obvious that (5.6) rules out equipartitions. Therefore, Savage’s construc-

tion of subjective probability fails for mosaics and even for finitely additive alge-

bras. There is another lesson to be drawn from this example. Note that if (5.6)

holds, then f ↔ [f ]p∗ is a bijection between the set G of risky acts and the set Lp

of induced lotteries because f �= g implies [f ]p∗ �= [g]p∗ . Therefore, every complete

and transitive preference 	 on G is represented by

f 	 g ⇔ [f ]p∗ 	1 [g]p∗ for f, g ∈ G,

25Formally, the induction relies on the axiom of choice. It is possible to avoid this reliance,

and construct p∗ explicitly, but then the argument becomes less transparent.
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where 	1 is a complete and transitive binary relation on Lp. This observation

shows that in our setting, any meaningful notion of probabilistic sophistication

must impose additional conditions on the risk preference besides completeness and

transitivity. In Machina–Schmeidler’s paradigm, these conditions are monotonic-

ity and continuity.

A APPENDIX: Proofs of Theorems

In the proofs we use a briefer terminology. Events are elements of the mosaic R and are denoted
by A, B, C, D, E, F , H, and S. Partitions, written as {A = An

1}, are collections of disjoint
events {A1, . . . , An} ⊂ R such that ∪n

i=1Ai = A ∈ R. Acts are elements of G and are denoted
by f , g, and h. The adjective risky is skipped as redundant hereafter.

If events A and B are disjoint, write A ⊕ B instead of A ∪ B. If B is a subset of A, write
A � B instead of A \ B. Given a partition {A = An

1} and indices i, j ≥ 0, let

Aj
i =

⋃
k∈[1,n] : i≤k≤j

Ak.

Then Aj
i ∈ R because R satisfies (µ) and S = A1 ⊕ A2 ⊕ · · · ⊕ An ⊕ ¬A is a partition of the

universal event.
Given a collection E ⊂ R of events, denote by α(E) the smallest algebra that contains E .

If E is finite, then α(E) is also finite. With a slight abuse of notation, write α(A) instead of
α({A}), α(A,B) instead of α({A,B}) etc. As R satisfies (∗) and (∗∗), then for all A ∈ R,
α(A) = {∅, A,¬A,S} ⊂ R. As R satisfies (µ), then for all partitions {S = Am

1 } and {S = Bn
1 },

α(A1, A2, . . . , Am, B1, B2, . . . , Bn) ⊂ R ⇔
Ai ∩ Bj ∈ R for all i = 1 . . . m and j = 1 . . . n ⇔

{A1, A2, . . . , Am} ⊂ R � {B1, B2, . . . , Bn}.
(A.1)

A.1 Construction of Subjective Probability

Suppose that 	 satisfies P1(R), P3(R), P4∗(R), P5(R), P6(R). Fix outcomes x � x′. For
arbitrary events A,B ∈ R, define a comparative likelihood relation A 	0 B as follows:

A 	0 B ⇔ xAx′ 	 xBx′.

Note that by P4∗(R), A 	0 B if and only if zAz′ 	 zBz′ for all z � z′. We seek a subjective
probability measure p : R → [0, 1] that represents 	0:

p(A) ≥ p(B) ⇔ A 	0 B for A,B ∈ R. (A.2)
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Such p is called a quantitative probability.
Call an event A ∈ R non-null if A �0 ∅; call A null otherwise. Say that a partition

{A = An
1} is non-null if Ai �0 ∅ for all i = 1 . . . n. Say that {A = An

1} is finer than an event
B if Ai ≺0 B for all i = 1 . . . n.

Axioms P1(R), P3(R), P4∗(R), P5(R), P6(R) imply the following properties for the com-
parative likelihood relation 	0.

Q1. 	0 is complete and transitive. (Q1 follows from P1(R)).
Q2. S �0 ∅.
Q3. For all events A ∈ R, S 	0 A 	0 ∅. (Q3 follows from P3(R)).
Q4. For all partitions {A = A2

1} and {B = B2
1} such that α(A1, A2, B1, B2) ⊂ R,

A1 	0 (�0)B1 and A2 	0 B2 ⇒ A 	0 (�0) B.

Proof. Let A3 = ¬A, B3 = ¬B, and Eij = Ai ∩ Bj for i, j = 1 . . . 3. All of these sets belong

to the algebra α(A1, A2, B1, B2) and hence, belong to R. Denote by f =


x11 x12 x13

x21 x22 x23

x31 x32 x33


 the

act that yields outcomes xij on Eij . Then

A1 	0 (�0)B1︸ ︷︷ ︸
def.

A2 	0 B2︸ ︷︷ ︸
def.

x x x

x′ x′ x′

x′ x′ x′


 	 (�)


x x′ x′

x x′ x′

x x′ x′




︸ ︷︷ ︸
P4∗(R)


x′ x′ x′

x x x

x′ x′ x′


 	


x′ x x′

x′ x x′

x′ x x′




︸ ︷︷ ︸
P4∗(R)

x′ x x

x′ x′ x

x′ x′ x′


 	 (�)


x′ x′ x′

x x′ x

x x′ x′


 =


x′ x′ x′

x x′ x

x x′ x′


 	


x′ x x′

x′ x′ x′

x x x′




︸ ︷︷ ︸
P1(R)

x′ x x

x′ x′ x

x′ x′ x′


 	 (�)


x′ x x′

x′ x′ x′

x x x′




︸ ︷︷ ︸
P4∗(R)

x x x

x x x

x′ x′ x′


 	 (�)


x x x′

x x x′

x x x′




︸ ︷︷ ︸
def.

A 	0 (�0)B.

By induction, Q4 can be extended to n-element partitions as follows: for all partitions {A = An
1}

and {B = Bn
1 } such that α(A1, . . . , An, B1, . . . , Bn) ⊂ R,

A1 	0 (�0)B1 and Ai 	0 Bi for all i > 1 ⇒ A 	0 (�0) B.
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Roughly, Q4 asserts that comparative likelihood is additive over any subalgebra of the mosaic R.

QF (Fineness). For any non-null event A and for any finite collection E ⊂ R, there exists a
partition {S = Sm

1 } ⊂ R � E finer than A.

Proof. Fix A �0 ∅ and finite E ⊂ R. The collection E ′ = α(A) ∪ E is finite, and the acts
f = xAx′ and g = x′ are E ′-measurable. A �0 ∅ implies that f � g. By P6(R), there exists
a partition {S = Sm

1 } ⊂ R � E ′ ⊂ R � E such that for all i = 1 . . . m, f � xSig, that is,
A �0 Si.

QT (Tightness). For any events A �0 B, there exists a non-null partition A = C ⊕D such
that C = A � D �0 B and a non-null partition ¬B = C ′ ⊕ D′ such that A �0 B ⊕ C ′.

Proof. Fix A �0 B. Let E = α(A)∪α(B). The acts f = xAx′ and g = xBx′ are E-measurable,
and f � g because A �0 B. By P6(R), there exists a partition {S = Sm

1 } ⊂ R � E such that
for all i = 1 . . . m, x′Sif � g, that is, A� (A∩Si) �0 B. Let Ei = Si ∩A; then Ei ∈ R because
A ∈ E and Si ∈ R � E . Let D = Ek and C = A � D, where k is such that Ek �0 ∅; if there
is no such k, then by Q4, ∅ 	 Em

1 = A, which contradicts A �0 B 	0 ∅. Thus, the partition
A = C ⊕ D is non-null, and C �0 B.

By P6(R), there exists (another) partition {S = Sm
1 } ⊂ R � E such that for all i = 1 . . . m,

f � xSig, that is, A �0 B ⊕ (Si ∩ ¬B). Take Ei = Si ∩ (¬B); then Ei ∈ R because ¬B ∈ E
and Si ∈ R � E . Let C ′ = Ek and D′ = ¬B � C ′, where k is such that Ek �0 ∅; if there is no
such k, then by Q4, B 	0 B ⊕ Em

1 = S, which contradicts S 	0 A �0 B. Then A �0 B ⊕ C ′,
and D′ is non-null because otherwise by Q4, B ⊕ C ′ 	0 (B ⊕ C ′) ⊕ D′ = S 	0 A. Thus, the
partition ¬B = C ′ ⊕ D′ is non-null, and A �0 B ⊕ C ′.

Note that Q1–Q4 generalize de Finetti’s [3] definition of a qualitative probability, while QF
and QT generalize Savage’s conditions of fineness and tightness. Savage shows that any fine and
tight qualitative probability 	0 on a σ-algebra can be represented by quantitative probability.26

Niiniluoto [18] and Wakker [22] extend this result to algebras. We extend it further to mosaics.
Therefore, our construction of subjective probability does not rely directly on properties of
preference 	 but relies instead on properties of the comparative likelihood relation 	0. This
construction applies in the proofs of both Theorems 3.1 and 4.1; it applies also in a de Finetti-
type setting where 	0 is taken as a primitive and Q1–Q4, QF, QT are imposed as axioms.

Properties Q1–Q4, QF, and QT have the following implications.
Q5. For all partitions {A = A2

1} and {B = B2
1},

A1 	0 (�0)B1 and A2 	0 B2 ⇒ A 	0 (�0) B.

Proof. Fix partitions {A = A2
1} and {B = B2

1} and consider three cases.
Case I. A1 �0 B1 and A2 �0 B2. Construct a partition {E = E2

1} such that

α(A1, A2, E1, E2) ⊂ R and α(B1, B2, E1, E2) ⊂ R,

A1 �0 E1 �0 B1 and A2 �0 E2 �0 B2.
(A.3)

26It is well-known that Q1–Q4 alone are not sufficient for a quantitative probability represen-
tation (Kraft et al. [14]).
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Then by Q4, A �0 E �0 B and by transitivity, A �0 B. To construct E1 and E2, use QT and
fix non-null partitions A1 = C1 ⊕ D1 and A2 = C2 ⊕ D2 such that C1 �0 B1 and C2 �0 B2.
By QF, there exists a partition

{S = Sm
1 } ⊂ R � {C1,D1, C2,D2,¬A,B1, B2,¬B}

that is finer than D1 and also finer than D2. By (A.1),

α(S1, . . . , Sm, C1,D1, C2,D2) ⊂ R and

α(S1, . . . , Sm, B1, B2) ⊂ R.

As Sm
1 �0 C1 �0 S0

1 , there exists k1 ∈ [0,m] such that Sk1
1 �0 C1 	0 Sk1−1

1 . Then

A1 = C1 ⊕ D1 �0
Q4

Sk1−1
1 ⊕ Sk1 = Sk1

1 �0 C1 �0 B1.

Note that Sm
k1+1 �0 C2 because C2 	0 Sm

k1+1 implies a contradiction:

A1 ⊕ C2 �0
Q4

Sk1
1 ⊕ Sm

k1+1 = S.

As Sm
k1+1 �0 C2 �0 Sk1

k1+1, there exists k2 ∈ [k1,m] such that Sk2
k1+1 �0 C2 	0 Sk2−1

k1+1 . Then

A2 = C2 ⊕ D2 �0
Q4

Sk2−1
k1+1 ⊕ Sk2 = Sk2

k1+1 �0 C2 �0 B2.

Let E1 = Sk1
1 and E2 = Sk2

k1+1. Then E1 and E2 satisfy conditions (A.3).
Case II. A1 �0 B1 and A2 	0 B2. Use QT and fix a non-null partition A1 = C1 ⊕D1 such

that C1 �0 B1. Then A2 ⊕ D1 �0 A2 	0 B2. By Case I,

A = C1 ⊕ (A2 ⊕ D1) �0 B1 ⊕ B2 = B

and A �0 B.
Case III. A1 	0 B1 and A2 	0 B2. Suppose that B �0 A. Use QT and fix a non-null

partition ¬A = C ′ ⊕ D′ such that B �0 A ⊕ C ′. Then A1 ⊕ C ′ �0 A1 	0 B1. By Case II,

A ⊕ C ′ = (A1 ⊕ C ′) ⊕ A2 �0 B1 ⊕ B2 = B

and A ⊕ C ′ �0 B, which is a contradiction. Thus, A 	0 B.

By induction, Q5 can be extended to n-element partitions as follows: for all partitions {A = An
1}

and {B = Bn
1 },

A1 	0 (�0)B1 and Ai 	0 Bi for all i > 1 ⇒ A 	0 (�0) B.

Roughly, Q5 asserts that comparative likelihood is additive over the entire mosaic R.

Q6. For any non-null event A and for any event B, there exists a partition {B = Bm
1 } finer

than A.
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Proof. By QF, there exists a partition {S = Sm
1 } ⊂ R�{B,¬B} finer than A. For all i = 1 . . . m,

the sets Bi = B ∩ Si and ¬B ∩ Si belong to R and partition Si. Therefore, Bi �0 Si ≺0 A,
and the partition {B = Bm

1 } is finer than A.

Q7. For any events A �0 B and for any non-null partition {A = An
1}, there exists an

n-element partition {B = Bn
1 } such that Ai �0 Bi for all i = 1 . . . n.

Proof. First, suppose that n = 2. By QT, there exists a non-null partition ¬B = C ′ ⊕ D′ such
that A �0 B ⊕ C ′. Use Q6 and fix a partition {B = Em

1 } finer than C ′. Let k be the maximal
index in [0,m] such that A1 �0 Ek

1 . If A2 �0 Em
k+1, then B = Ek

1 ⊕ Em
k+1 is the required

partition. Suppose on the contrary that Em
k+1 	0 A2. Then k < m, and

Ek
1 ⊕ C ′ �0

Q5
Ek

1 ⊕ Ek+1 = Ek+1
1 	0

def. of k
A1.

This implies a contradiction

B ⊕ C ′ = (Ek
1 ⊕ C ′) ⊕ Em

k+1 �0
Q5

A1 ⊕ A2 = A.

Complete the proof by induction with respect to n.

Q8. For any events A �0 B and for any partition {B = Bn
1 }, there exists an n-element

partition {A = An
1} such that Ai �0 Bi for all i = 1 . . . n.

Proof. First, suppose that n = 2. By QT, there exists a non-null partition A = C ⊕ D such
that C �0 B. Use Q6 and fix a partition {C = Em

1 } finer than D. Let k be the maximal index
in [0,m] such that B1 �0 Ek

1 . Then Ek
1 ⊕ D �0 Ek

1 ⊕ Ek+1 	0 B1. Also Em
k+1 �0 B2 because

there is a contradiction otherwise:

B1 ⊕ B2 �0
Q5

Ek
1 ⊕ Em

k+1 = C.

Thus, A = (Ek
1 ⊕ D) ⊕ Em

k+1 is the required partition of A.
Complete the proof by induction with respect to n.

Next, we define approximate numerical likelihoods of events. For every A ∈ R, let

ν(A) = min
{S=Sm

1 }≺0A
m. (A.4)

In other words, let ν(A) be the minimal number of elements that a partition of S finer than A

may have. If A is non-null, then by QF, ν(A) is finite; if A is null, then ν(A) is equal to +∞.
Note that if {S = S

ν(A)
1 } is finer than A, then this partition is non-null because otherwise S can

be partitioned into ν(A) − 1 events that are finer than A.
Define the approximate likelihood of an event A ∈ R as

r(A) =
1

ν(A)
. (A.5)

The range of the function r belongs to the interval [0, 1] or more precisely, to the set
{

1
2 , 1

3 , . . . , 0
}

.

By QF, r(A) = 0 if and only if A is null.
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The notion of approximate likelihood satisfies the following properties R1–R6.
R1. The function r almost agrees with 	0, that is, for all events A and B,

A 	0 B ⇒ r(A) ≥ r(B) ;

r(A) > r(B) ⇒ A �0 B.

Proof. Any partition finer than B �0 A is also finer than A. Therefore, A 	0 B implies
ν(A) ≤ ν(B) and r(A) ≥ r(B). Conversely, r(A) > r(B) implies A �0 B.

R2. For all partitions {A = An
1}, max

i=1...n
ν(Ai) > n, or equivalently, min

i=1...n
r(Ai) < 1

n .

Proof. Fix a partition {A = An
1}, and let Ak be such that Ak �0 Ai for all i = 1 . . . n. By R1,

max
i=1...n

ν(Ai) = ν(Ak). Suppose that ν(Ak) < n. Take a partition {S = S
ν(Ak)
1 } finer than Ak.

For all i = 1 . . . ν(Ak), Ai 	0 Ak �0 Si. By Q5, A
ν(Ak)
1 �0 S

ν(Ak)
1 = S, which is impossible.

R3. For any n, there exists A �0 ∅ such that ν(A) > n, that is, r(A) < 1
n . In other words,

the range of the function r includes arbitrarily small positive values.

Proof. Fix A �0 ∅ and a non-null partition {S = S
ν(A)
1 } finer than A. By R2, ν(A) <

max
i=1...ν(A)

ν(Si). Therefore, the function ν is unbounded on non-null events.

R4. For any A �0 ∅, there exists a non-null partition A = C ⊕ D such that r(C) = r(A).

Proof. Fix an event A �0 ∅ and a partition {S = S
ν(A)
1 } finer than A. Let Sk be such that

Sk 	0 Si for all i = 1 . . . ν(A). By QT, there exists a non-null partition A = C ⊕D �0 Sk such
that C �0 Sk. Then {S = S

ν(A)
1 } is finer than C. Therefore, ν(C) ≤ ν(A). On the other hand,

ν(C) ≥ ν(A) because C ≺0 A. Thus, r(C) = r(A).

Given a non-null event B, say that {A = Bn
1 } is a B-partition if this partition is finer than

B, and r(Bi) = r(B) for all i = 1 . . . n − 1.
R5. For any A ∈ R and for any non-null B ∈ R, there exists a B-partition {A = Bn

1 }.

Proof. Say that a partition {A = An
1} is B-acceptable, if for all i = 1 . . . n − 1, Ai ≺0 B and

r(Ai) = r(B). A trivial B-acceptable partition is {A = A}. If {A = An
1} is B-acceptable, then by

R2, n − 1 < max
i=1...n−1

ν(Ai) = ν(B). Therefore, there exists a B-acceptable partition {A = Bn
1 }

that has the maximal number of elements among all B-acceptable partitions. Suppose that
Bn 	0 B. By R4 and Q6, there exists a non-null partition B = C⊕D such that r(C) = r(B) and
a partition {Bn = Em

1 } finer than D. Let k be the maximal index in [0,m] such that C �0 Ek
1 .

Then B = C ⊕ D �0 Ek
1 ⊕ Ek+1 = Ek+1

1 	0 C. It follows that r(B) ≥ r(Ek+1
1 ) ≥ r(C), that

is, r(B) = r(Ek+1
1 ). Therefore, the (n + 1)-element partition

A = B1 ⊕ · · · ⊕ Bn−1 ⊕ Ek+1
1 ⊕ Em

k+2

is is B-acceptable. This contradiction implies that B �0 Bn. Thus, {A = Bn
1 } is a B-partition.
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R6. For any event A, there exists ε > 0 such that for all non-null events B and for all
B-partitions {A = Bn

1 },

r(B) < ε ⇒ r(A) ≤ (n − 1) · r(B).

Proof. If A is null, then r(A) = 0. Suppose that A is non-null. By R4, there exists a non-null
partition A = C ⊕ D such that r(C) = r(A). Let ε = r(D). Fix a non-null event B such
that r(B) < ε and a B-partition {A = Bn

1 }. Then Bn ≺0 B ≺0 D and A 	0 Bn−1
1 �0 C.

Therefore, r(Bn−1
1 ) = r(A). Take a partition {S = S

ν(A)
1 } finer than Bn−1

1 . By Q7, each event
Sj ≺0 Bn−1

1 can be subpartitioned into n − 1 events,

Sj = Sj,1 ⊕ Sj,2 ⊕ · · · ⊕ Sj,n−1

such that Sj,i ≺0 Bi ≺0 B for all i = 1 . . . n− 1. The partition of S into (n− 1) · ν(A) elements
Sj,i is finer than B. Thus, (n − 1) · ν(A) ≥ ν(B), and r(A) ≤ (n − 1) · r(B).

The following theorem delivers a quantitative probability representation for 	0.

Theorem A.1. A binary relation 	0 on a mosaic R satisfies Q1–Q4, QF, and QT if and
only if 	0 is represented by a finely ranged probability measure p : R → [0, 1]. The probability
measure p that represents 	0 is unique and for all A ∈ R,

p(A) = sup
{A=An

1 }

n∑
i=1

r(Ai). (A.6)

Proof. Suppose that 	0 satisfies Q1–Q4, QF, QT. Let p : R → [0, 1] be the function given
by (A.6). Show that p is a probability measure. For all A ∈ R, p(A) ≥ r(A) ≥ 0. Fix a
partition {S = Sm

1 }, a non-null event B, and B-partitions {Si = B(i)ni
1 }. Then the partition of

S into
∑m

i=1 ni events B(i)j is finer than B, and hence,
∑m

i=1 ni ≥ ν(B). It follows that

m∑
i=1

p(Si) ≥
m∑

i=1

(ni − 1) · r(B) =

(
m∑

i=1

ni

)
· r(B) − m · r(B) ≥ 1 − m · r(B).

As r(B) can be arbitrarily small,
∑m

i=1 p(Si) ≥ 1. On the other hand, by R2,

m∑
i=1

(ni − 1) < max
i=1...m

j=1...(ni−1)

ν(B(i)j) =
1

r(B)
.

By R6, there exists ε > 0 such that

r(B) < ε ⇒ r(Si) < (ni − 1) · r(B) for all i = 1 . . . m.

As r(B) can be arbitrarily small,

m∑
i=1

r(Si) <

(
m∑

i=1

(ni − 1)

)
· r(B) <

1
r(B)

· r(B) = 1.
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This inequality implies that for all partitions {Si = A(i)mi
1 },

S =
⋃

i=1...m
j=1...mi

A(i)j ⇒
m∑

i=1

mi∑
j=1

r(A(i)j) < 1 ⇒

m∑
i=1

p(Si) =
m∑

i=1


 sup

{Si=A(i)
mi
1 }

mi∑
j=1

r(A(i)j)


 ≤ 1.

Thus,
∑m

i=1 p(Si) = 1, and p is a probability measure.
Show that p represents 	0. Fix arbitrary events A and B. Suppose that A �0 B. Then by

QT, there exists a non-null partition A = C ⊕ D such that C �0 B. By Q8, for any partition
{B = Bn

1 }, there exists a partition {C = Cn
1 } such that Ci �0 Bi for all i = 1 . . . n. It follows

that

p(A) ≥ r(D) + sup
{C=Cn

1 }

n∑
i=1

r(Ci) ≥ r(D) + sup
{B=Bn

1 }

n∑
i=1

r(Bi) = r(D) + p(B).

Thus, p(A) > p(B). On the other hand, suppose that p(A) > p(B). Then, there exists a
partition {A = An

1} such that
∑n

i=1 r(Ai) > p(B). Without loss of generality, r(A1) > 0.
By R4, there exists a non-null partition A1 = C ⊕ D such that r(A1) = r(C). Then p(C) ≥∑n

i=1 r(Ai) > p(B), and A �0 C 	0 B. Thus, p represents 	0.
Show that p is finely ranged. Fix an arbitrary finite collection E ⊂ R and an arbitrary

ε > 0. Use R3 and fix a non-null event B such that r(B) < ε. Take a non-null partition
{S = B

ν(B)
1 } finer than B. Then

∑ν(B)
i=1 p(Bi) = 1. Therefore, there exists Bi �0 ∅ such that

p(Bi) ≤ 1
ν(B) < ε. By QF, there exists a partition {S = Sm

1 } ⊂ R � E finer than Bi. It follows
that p(Si) < p(Bi) < ε for all i = 1 . . . m.

Show that p is the unique probability measure that represents 	0. Suppose that another
probability measure p∗ : R → [0, 1] represents 	0. Fix an event A ∈ R. If A is null, then
p∗(A) = p∗(∅) = 0 = p(A). If A is non-null, then there exists a partition {S = S

ν(A)
1 } finer than

A. As p∗ is additive and represents 	0, then

1 = p∗(S) =
ν(A)∑
i=1

p∗(Si) < ν(A) · p∗(A),

that is p∗(A) > 1
ν(A) = r(A). Therefore, for all partitions {A = An

1},

p∗(A) =
n∑

i=1

p∗(Ai) >

n∑
i=1

r(Ai)

and p∗(A) ≥ p(A). Similarly, p∗(¬A) ≥ p(¬A). Thus, p(A) = p∗(A).
Finally, show that properties Q1–Q4, QF, and QT are necessary for a finely ranged prob-

ability measure p : R → [0, 1] to represent the binary relation 	0. This is non-trivial only
for QT. Fix arbitrary events A �0 B, and let ε = p(A) − p(B) > 0. There exists a partition
{S = Sm

1 } ⊂ R � {A,¬A,B,¬B} such that p(Si) < ε for all i = 1 . . . m. Then {A = Em
1 },

where Ei = A∩Si, and p(Ek) > 0 for some k. Let D = Ek. Then p(A�D) > p(A)− ε = p(B),
and A � D �0 B. The proof of the second part of QT is analogous.
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A.2 First-Order Stochastic Monotonicity

Suppose that 	 satisfies P1(R), P3(R), P4∗(R), P5(R), and P6(R). Then the finely ranged
probability measure p : R → [0, 1] given by (A.6) represents the preference over binary acts that
have outcomes x � x′. As we show next, the preference over the set G of all acts is first-order
stochastically monotonic with respect to the probability measure p, that is, for all acts f and g,

[f ]p � [g]p ⇒ f 	 g, (A.7)

[f ]p � [g]p ⇒ f � g. (A.8)

The proof of (A.7) and (A.8) relies on the following lemma.

Lemma A.2. For all n > 0, for all finite collections E ⊂ R, and for all events A ∈ R � E, the
set

p(A,n, E) =
⋃

{A=An
1 }⊂R�E

{(p(A1), p(A2), . . . , p(An))}

of n-dimensional vectors (p(A1), p(A2), . . . , p(An)) is dense in the simplex

∆(A,n) = {(v1, v2, . . . , vn) ∈ R
n
+ :

n∑
i=1

vi = p(A)}.

Proof. Fix a finite collection E ⊂ R and an event A ∈ R � E . Fix arbitrary value v ∈ [0, p(A)]
and ε > 0. Show that there exists a partition {A = A2

1} ⊂ R � E such that v − ε ≤ p(A1) ≤ v.
Let

E ′ = α(A) ∪ {E′ ∈ R : E′ = A ∩ E for some E ∈ E}.
As p is finely ranged, there exists a partition {S = Sm

1 } ⊂ R � E ′ such that p(Si) < ε for
all i = 1 . . . m. Then the sets A ∩ Si and ¬A ∩ Si belong to R and partition Si; by (µ), all
unions of these events belong to R. For i = 1 . . . m, p(A ∩ Si) ≤ p(Si) < ε. Let k ∈ [0,m]
be the minimal index such that p(A ∩ Sk

1 ) ≥ v − ε. Then p(A ∩ Sk
1 ) ≤ v because otherwise

p(A ∩ Sk−1
1 ) > v − p(A ∩ Sk) > v − ε. Let A1 = A ∩ Sk

1 and A2 = A ∩ Sm
k+1. For all E ∈ E and

for all i = 1 . . . m, the events (A ∩ Si) ∩ E = Si ∩ (A ∩ E) ∈ R partition A ∩ E ∈ R; by (µ),
A1 ∩ E ∈ R and A2 ∩ E ∈ R. Thus, A1 ∈ R � E and A2 ∈ R � E .

Fix an arbitrary vector (v1, v2, . . . , vn) ∈ R
n
+ such that

∑n
i=1 vi = p(A). By induction with

respect to n, there exists a partition {A = An
1} ⊂ R � E such that vi − ε

2n ≤ p(Ai) ≤ vi for all
i = 1 . . . n − 1. Then

n∑
i=1

|p(Ai) − vi| ≤ 2 · (n − 1) · ε

2n
< ε.

Thus, p(A,n, E) is dense in ∆(A,n).

Show that 	 satisfies (A.7) and (A.8). Say that acts f and g differ through n-outcome
subacts, if f and g can be written as

f =




z1 if s ∈ F1

z2 if s ∈ F2

. . . . . . . . . . . . . . .
zn if s ∈ Fn

h(s) if s ∈ H


 and g =




z1 if s ∈ G1

z2 if s ∈ G2

. . . . . . . . . . . . . . .
zn if s ∈ Gn

h(s) if s ∈ H


 (A.9)
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for some outcomes z1 	 z2 	 · · · 	 zn, for some event H (that can be empty), for some act
h ∈ G�H, and for some partitions S = F1⊕F2⊕· · ·⊕Fn ⊕H and S = G1⊕G2⊕· · ·⊕Gn ⊕H.

Prove (A.7) and (A.8) by induction with respect to n. If n = 1, then f = g and f ∼ g. Fix
n > 1 and suppose that (A.7) and (A.8) hold for all acts that differ through (n − 1)-outcome
subacts. Fix arbitrary acts f and g that have the form (A.9).

If zi ∼ zj for some i �= j, then by P3(R), ziFjf ∼ f and ziGjg ∼ g; the acts ziFjf and
ziGjg differ through (n − 1)-outcome subacts. Therefore,

[f ]p � (� )[g]p ⇒ [ziFjf ]p � [f ]p � (� )[g]p � [ziGjg]p ⇒
ziFjf 	 (�)ziGjg ⇒ f 	 (�)g.

Without loss of generality, suppose that z1 � z2 � · · · � zn. Then [f ]p � [g]p if and only if
p(F k

1 ) ≥ p(Gk
1) for all k = 1 . . . n; [f ]p � [g]p if and only if p(F k

1 ) ≥ p(Gk
1) for all k = 1 . . . n

and p(F k
1 ) > p(Gk

1) for some k ∈ [1, n]. Consider several cases.
Case I. p(F k

1 ) > p(Gk
1) for all k = 1 . . . n − 1, and

α(F1, F2, . . . , Fn,H,G1, G2, . . . , Gn) ⊂ R.

Take ε > 0 such that p(F k
1 ) > p(Gk

1) + ε for all k = 1 . . . n − 1. Then

p(F1 \ G1) =
n∑

i=i

vi, where

vi = p(Fi ∩ G1) for i = 2, . . . , n, and

v1 = p(F1 \ G1) −
n∑

i=2

vi = p(F1 \ G1) − p(G1 \ F1) = p(F1) − p(G1) > ε.

By Lemma A.2, there exists a partition {F1 \G1 = An
1} such that p(A1) > v1−ε and p(Ai) > vi

for i = 2, . . . , n. Let

f1 =

[
z2 if s ∈ A1

f(s) if s /∈ A1

]
.

By P3(R), f1 	 f . For all i = 2 . . . n, let

fi =


 z1 if s ∈ Fi ∩ G1

zi if s ∈ Ai

fi−1(s) if s /∈ Ai and s /∈ Fi ∩ G1


 .

As Ai �0 Fi ∩ G1, then by P4∗(R),

fi ≺


 z1 if s ∈ Ai

zi if s ∈ Fi ∩ G1

fi−1(s) if s /∈ Ai and s /∈ Fi ∩ G1


 = fi−1.

The acts fn and g can be written as

fn =




z2 if s ∈ E2

. . . . . . . . . . . . . . .
zn if s ∈ En

z1 if s ∈ G1

h(s) if s ∈ H


 and g =




z2 if s ∈ G2

. . . . . . . . . . . . . . .
zn if s ∈ Gn

z1 if s ∈ G1

h(s) if s ∈ H


 ,
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where E2 = (F2 ⊕ A1 ⊕ A2) � (F2 ∩ G1), and Ei = (Fi ⊕ Ai) � (Fi ∩ G1) for i = 3 . . . n. Thus,
fn and g differ through (n − 1)-outcome subacts. For all k = 2 . . . n,

k∑
i=2

p(Ei) = p(A1) +
k∑

i=2

(p(Fi) + p(Ai) − p(Fi ∩ G1)) ≥

(p(F1) − p(G1) − ε) +
k∑

i=2

p(Fi) =
k∑

i=1

p(Fi) − p(G1) − ε ≥
k∑

i=2

p(Gi).

Thus, [fn]p � [g]p, and fn 	 g. The preference f 	 g follows by transitivity from

f 	 f1 � f2 � · · · � fn 	 g.

Case II. p(F k
1 ) > p(Gk

1) for all k = 1 . . . n − 1. By Lemma A.2, there exists a partition
{¬C = En

1 } ⊂ R � (α(F1, . . . , Fn) ∪ α(G1, . . . , Gn)) such that

p(F k
1 ) > p(Ek

1 ) > p(Gk
1) for all k = 1 . . . n − 1.

Let

f ′ =




z1 if s ∈ E1

. . . . . . . . . . . . . . .
zn if s ∈ En

h(s) if s ∈ H


 .

By (A.1), α(F1, . . . , Fn, E1, . . . , En) ⊂ R and α(G1, . . . , Gn, E1, . . . , En) ⊂ R. Case I implies
that f 	 f ′ 	 g and hence, that f 	 g.

Case III. p(F k
1 ) ≥ p(Gk

1) for all k = 1 . . . n. Suppose that, contrary to (A.7), g � f . If Fn

is null, then by P3(R), zn−1Fnf ∼ f and zn−1Gng 	 g; the acts zn−1Fnf and zn−1Gng differ
through (n − 1)-outcome subacts; the first-order dominance

[zn−1Fnf ]p � [f ]p � [g]p � [zn−1Gng]p

implies that f ∼ zn−1Fnf 	 zn−1Gng 	 g and hence, f 	 g. If Fn is non-null, then by P6(R),
there exists a non-null partition {Fn = Em

1 } such that g � x1Eif for all i = 1 . . . m. Then
p(F k

1 ⊕ E1) > p(Gk
1) for all k = 1 . . . n − 1. Case II implies that x1E1f � g, which contradicts

g � x1E1f . Thus, f 	 g, and the proof of (A.7) is complete.
Case IV. p(F k

1 ) ≥ p(Gk
1) for all k = 1 . . . n and p(F k

1 ) > p(Gk
1) for some k ∈ [1, n]. There

exists k such that p(F k
1 ) > p(Gk

1) and p(F k+1
1 ) = p(Gk+1

1 ). Note that Gk+1 is non-null. By
Lemma A.2, there exists a non-null partition Gk+1 = C ⊕ D such that p(F k

1 ) ≥ p(D) + p(Gk
1).

Then l(f) � l(zkDg), and Case III implies f 	 zkDg. By P3(R), zkDg � g. Thus f � g, and
the proof of (A.8) is complete.

A.3 Sufficiency of Axioms

Suppose that 	 satisfies P1(R), P3(R), P4∗(R), P5(R), P6(R). Let p : R → [0, 1] be the
probability measure given by (A.6).
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Suppose that the set of outcomes X is finite. (The case of infinite X is analyzed later.)
Then there exist outcomes x∗ and x∗ such that x∗ 	 x 	 x∗ for all x ∈ X. Write l � l′ + o if
lotteries l, l′ ∈ L are such that l � l′′ for all l′′ ∈ L in some neighborhood of l′; write l + o � l′

if l′′ � l′ for all l′′ ∈ L in some neighborhood of l.

Lemma A.3. For any acts g � g′, there exist acts h � h′ such that [g]p + o � [h]p and
[h′]p � [g′]p + o.

Proof. Fix acts g � g′. Let the support of the lottery l = [g]p consist of outcomes y1 	
y2 	 · · · 	 yn. The event g−1(y1) is non-null. By P6(R), there exists a non-null partition
{g−1(y1) = Em

1 } such that x∗E1g � g′. Let h = x∗E1g. Fix an arbitrary lottery l′′ ∈ L such
that ‖[g]p − l′′‖ < p(E1). For each x ∈ X, one of the following cases applies.

1. x ∼ x∗. Then l′′(Yx) = 1 = [h]p(Yx).

2. y1 	 x � x∗. Then l′′(Yx) ≥ [g]p(Yx)− p(E1) because ‖[g]p − l′′‖ < p(E1), and [g]p(Yx)−
p(E1) = [h]p(Yx) because g−1(Yx) = h−1(Yx) ⊕ E1.

3. x � y1. Then l′′(Yx) ≥ 0 = [h]p(Yx).

Therefore, l′′(Yx) ≥ [h]p(Yx) for all x ∈ X, and l′′ � [h]p. Thus, [g]p + o � [h]p. Analogously,
h � g′ implies that there exists a non-null E1 such that h � h′ = x∗E1g

′ and [h′]p � [g′]p+o.

Lemma A.4. For any lottery l ∈ L and for any non-null event E, there exists an act h ∈
G � {¬E} such that ‖[h]p − l‖ < p(E) and [x∗Eh]p � l + o � [x∗Eh]p.

Proof. Fix a lottery l and a non-null event E. Let the support of l consist of outcomes y1 	
y2 	 · · · 	 yn. Take ε = 1

2 · p(E) · min{l(y1), l(yn)}. By Lemma A.2, there exist partitions
{E = An

1} and {¬E = Bn
1 } such that for all i = 1 . . . n,

p(E) · (1 + ε) · l(yi) ≥ p(Ai) ≥ p(E) · (1 − ε) · l(yi), and

(1 − p(E)) · (1 + ε) · l(yi) ≥ p(Bi) ≥ (1 − p(E)) · (1 − ε) · l(yi).

Take h ∈ G such that h(s) = yi if s ∈ Ai ⊕ Bi for i = 1 . . . n. Then

‖[h]p − l‖ =
n∑

i=1

|p(Ai) + p(Bi) − l(yi)| ≤ ε ·
n∑

i=1

l(yi) = ε < p(E).

Let l∗ = [x∗Eh]p and l∗ = [x∗Eh]p. Fix an arbitrary lottery l′′ ∈ L such that ‖l − l′′‖ < ε. For
each x ∈ X, one of the following cases applies.

1. x ∼ x∗. Then l∗(Yx) = 1 = l′′(Yx) = l∗(Yx).

2. yn 	 x � x∗. Then l∗(Yx) = 1 ≥ l′′(Yx) ≥ l(Yx) − ε = 1 − ε ≥ 1 − p(E) = l∗(Yx).

50



3. y1 	 x � yn. Then p(E) · (1 − l(Yx)) ≥ p(E) · l(yn) ≥ 2 · ε and

l∗(Yx) = p(E) +
∑

i:yi�x

p(Bi) ≥ p(E) + (1 − p(E)) · (1 − ε) · l(Yx) ≥

l(Yx) + p(E) · (1 − l(Yx)) − ε ≥ l(Yx) + 2 · ε − ε = l(Yx) + ε ≥ l′′(Yx).

Also, p(E) · l(Yx) ≥ p(E) · l(y1) ≥ 2 · ε, and

l∗(Yx) =
∑

i:yi�x

p(Bi) ≤ (1 − p(E)) · (1 + ε) · l(Yx) ≤

l(Yx) − p(E) · l(Yx) + ε ≤ l(Yx) − 2 · ε + ε = l(Yx) − ε ≤ l′′(Yx).

4. x � y1. Then l∗(Yx) = p(E) ≥ 0 + ε = l(Yx) + ε ≥ l′′(Yx) ≥ 0 = l∗(Yx).

Therefore, l∗(Yx) ≥ l′′(Yx) ≥ l∗(Yx) for all x ∈ X, and l∗ � l′′ � l∗ for all l′′ in the ε-
neighborhood of l. Thus, l∗ � l + o � l∗.

Theorem 4.1(I)

Suppose that the preference 	 satisfies P1(R), P3(R), P4∗(R), P5(R), P6(R). Let Lp be the
set of lotteries that are induced by acts via the probability p. Show that 	 is represented by

f 	 f ′ ⇔ [f ]p 	1 [f ′]p for all acts f, f ′ ∈ G, (A.10)

where the binary relation 	1 ranks only Lp and is non-degenerate, complete, transitive, contin-
uous, and strictly monotonic. Moreover, such 	1 is unique.

Proof. For all lotteries l, l′ ∈ Lp, let l 	1 l if l = [g]p and l′ = [g′]p for some acts g 	 g′. Then
for all acts f and f ′,

f 	 f ′ ⇒ [f ]p 	1 [f ′]p;

[f ]p 	1 [f ′]p ⇒ [f ]p = [g]p and [f ′]p = [g′]p for some g 	 g′ ⇒ {A.7}
f ∼ g and f ′ ∼ g′ for some g 	 g′ ⇒ f 	 f ′.

Thus, representation (A.10) holds.
The relation 	1 is non-degenerate, complete and transitive because 	 is non-degenerate,

complete and transitive. By (A.7) and (A.8), 	1 is strictly monotonic. Show that 	1 is
continuous. Fix arbitrary lotteries l, l′ ∈ Lp such that l �1 l′. Then l = [g]p and l′ = [g′]p for
some acts g � g′. By Lemma A.3, there exist acts h � h′ such that l+o � [h]p and [h′]p � l′+o.
Therefore, for all l′′ ∈ Lp in some neighborhood of l, l′′ � [h]p �1 [h′]p � [g′]p = l′ and l′′ �1 l′

because 	1 is monotonic and transitive. Thus, the set {l′′ ∈ Lp : l′′ �1 l′} is open in Lp for all
l′ ∈ Lp. Analogously, the set {l′′ ∈ Lp : l �1 l′′} is open in Lp for all l ∈ Lp.

The uniqueness of 	1 follows from representation (A.10).

Section 5.2 provides an example, where 	1 cannot be extended from Lp to a continuous
weak order on the set L of all lotteries. To account for such situations, Theorem 4.1(I) retains
the risk preference 	1 as a binary relation on Lp.
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Theorem 3.1

Suppose that 	 satisfies P1(R), P2(R), P3(R), P4(R), P5(R), and P6(R).27 Show that 	 is
represented by

f 	 f ′ ⇔ [f ]p 	1 [f ′]p for all f, f ′ ∈ G, (A.11)

where the extended risk preference 	1 is non-degenerate, complete, transitive, continuous, and
mixture separable on the set L of all lotteries. Moreover, such 	1 is unique.

Proof. For all l, l′ ∈ L, let l 	1 l′ if there exist sequences of acts {gi}∞i=1 and {g′i}∞i=1 such that

lim
i→∞

[gi]p = l, lim
i→∞

[g′i]p = l′, and gi 	 g′i for all i = 1, 2, . . . . (A.12)

Analyze properties of 	1 in several steps.
Step 1. For all lotteries l, l′ ∈ L,

l 	1 l′ ⇔ g 	 g′ for all g, g′ ∈ G : [g]p � l + o and l′ + o � [g′]p (A.13)

l′ �1 l ⇔ g′ � g for some g, g′ ∈ G : [g]p � l + o and l′ + o � [g′]p. (A.14)

Fix arbitrary lotteries l, l′ ∈ L. Two cases are possible.

1. The weak preference g 	 g′ holds for all acts g and g′ such that [g]p � l + o and
l′ + o � [g′]p. Fix a sequence of non-null events Ei such that lim

i→∞
p(Ei) = 0. By

Lemma A.4, there exist sequences {hi}∞i=1 and {h′
i}∞i=1 such that for all i, ‖[hi]p − l‖ <

p(Ei), ‖[h′
i]p − l′‖ < p(Ei), [x∗Eihi]p � l + o, and l′ + o � [x∗Eih

′
i]p. It follows that the

weak preference x∗Eihi 	 x∗Eih
′
i holds. Note that

‖[x∗Eihi]p − l‖ ≤ ‖[x∗Eihi]p − [hi]p‖ + ‖[hi]p − l‖ < 3 · p(Ei),

that is, lim
i→∞

[x∗Eihi]p = l. Analogously, lim
i→∞

[x∗Eih
′
i]p = l′. Then gi = x∗Eihi and

g′i = x∗Eih
′
i satisfy (A.12), and hence, l 	 l′.

2. The strict preference g′ � g holds for some acts g and g′ such that [g]p � l + o and
l′ + o � [g′]p. Suppose that some sequences {gi}∞i=1 and {g′i}∞i=1 satisfy (A.12). Then
[g]p � lim

i→∞
[gi]p + o and lim

i→∞
[g′i]p + o � [g′]p imply that [g]p � [gi]p and [g′i]p � [g′]p

for sufficiently large i. By (A.7), g 	 gi 	 g′i 	 g′ which contradicts g′ � g. Thus, no
sequences {gi}∞i=1 and {g′i}∞i=1 satisfy (A.12) and l 	1 l′ does not hold. To show that
l′ 	1 l, fix a sequence of non-null events Ei such that lim

i→∞
p(Ei) = 0 and sequences of acts

{hi}∞i=1 and {h′
i}∞i=1 such that lim

i→∞
[x∗Eihi]p = l, lim

i→∞
[x∗Eih

′
i]p = l′, l + o � [x∗Eihi]p

and [x∗Eih
′
i]p � l′ + o. Then for all i, x∗Eih

′
i 	 g′ � g 	 x∗Eihi because [x∗Eih

′
i]p �

l′ � [g′]p and [g]p � l � [x∗Eihi]p. By definition, l′ 	1 l. Thus, l′ �1 l.

27This set of axioms is stronger than P1(R), P3(R), P4∗(R), P5(R), P6(R) because P2(R)
and P4(R) imply P4∗(R).
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By (A.13) and (A.14), 	1 is complete.
Step 2. Show that 	1 is transitive. Fix arbitrary lotteries l, l′, l′′ such that l 	1 l′ 	1 l′′.

Suppose that l′′ �1 l. By (A.14), there exist acts g′′ � g such that [g]p � l+o and l′′+o � [g′′]p.
Use P6(R) to construct a non-null event E and an act h ∈ G � {¬E} such that28

g′′ � x∗Eh � x∗Eh � g.

By Lemma A.4, there exists an act h′ ∈ G � {¬E} such that [x∗Eh′]p � l′ + o � [x∗Eh′]p.
Two cases are possible.

1. x∗Eh 	 x∗Eh′. Then g′′ � x∗Eh 	 x∗Eh′ and by (A.14), l′′ �1 l′.

2. x∗Eh′ 	 x∗Eh. Then by P2(R), x∗Eh′ 	 x∗Eh � g and by (A.14), l′ �1 l.

Either case contradicts l 	1 l′ 	1 l′′. Thus, the strict preference l′′ �1 l is impossible and
l 	1 l′′ holds.

Step 3. Show that 	1 is weakly monotonic. Fix arbitrary lotteries l and l′ such that l � l′.
For all acts g and g′ such that [g]p � l + o and l′ + o � [g′]p, the weak preference g 	 g′ follows
by (A.7) from [g]p � l � l′ � [g′]p. By (A.13), l 	1 l′.

Step 4. Show that 	1 is continuous. Fix arbitrary lotteries l and l′ such that l �1 l′.
By (A.14), there exist acts g � g′ such that l + o � [g]p and [g′]p � l′ + o. For all l′′ in some
neighborhood of l, l′′ + o � [g]p and by (A.14), l′′ �1 l′. Thus, the set {l′′ ∈ L : l′′ �1 l′} is
open in L for all l′ ∈ L. Analogously, the set {l′′ ∈ L : l �1 l′′} is open in L for all l ∈ L.

Step 5. Show that representation (A.11) holds. Fix acts f and f ′. If f 	 f ′, then (A.12)
holds for gi = f and g′i = f ′; therefore, [f ]p 	1 [f ′]p. If f � f ′, then by Lemma A.3, there exist
acts h � h′ such that [f ]p + o � [h]p and [h′]p � [f ′]p + o. By (A.14), [f ]p �1 [f ′]p.

Step 6. Show that 	1 is mixture separable. Fix lotteries l, l′, and l′′ such that l 	1 l′. Write
the supports of the lotteries l, l′, and l′′ as y1 	 · · · 	 yn, y′

1 	 · · · 	 y′
n′ and y′′

1 	 · · · 	 y′′
n′′

respectively. Fix arbitrary ε > 0 and an event H such that 0 < p(H) < 1. By Lemma A.2,

28More precisely, construct E and h as follows. The event g−1(x) is non-null for some outcome
x ≺ x∗; otherwise by P3(R), g 	 x∗ 	 g′′. By P6(R), there exists a non-null partition
{g−1(x) = Am

1 } such that g′′ � x∗A1g. Let h = x∗A1g. Then h � xA1g = g. By P6(R),
there exists a non-null partition {A1 = Bn

1 } such that x∗B1h � g. Let E = B1. Then
g′′ � x∗A1h = h = x∗Eh � x∗Eh � g.
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there exist partitions

{H = An
1} :


1 ≤ p(Ai)

p(H)·l(yi)
≤ 1 + ε for i = 1 . . . n − 1, and

1 − ε ≤ p(An)
p(H)·l(yn) ≤ 1 ;

{¬H = Bn
1 } :


1 ≤ p(Bi)

p(¬H)·l(yi)
≤ 1 + ε for i = 1 . . . n − 1, and

1 − ε ≤ p(Bn)
p(¬H)·l(yn) ≤ 1 ;

{H = Cn′
1 } :


1 − ε ≤ p(Ci)

p(H)·l′(y′
i)

≤ 1 for i = 1 . . . n′ − 1, and

1 ≤ p(Cn′ )
p(H)·l′(y′

n′ )
≤ 1 + ε ;

{¬H = Dn′
1 } :


1 − ε ≤ p(Di)

p(¬H)·l′(y′
i)

≤ 1 for i = 1 . . . n′ − 1, and

1 ≤ p(Dn′ )
p(¬H)·l′(y′

n′ )
≤ 1 + ε ;

{H = Fn′′
1 } : 1 − ε ≤ p(Fi)

p(H) · l′′(y′′
i )

≤ 1 + ε for i = 1 . . . n′′ ;

{¬H = Gn′′
1 } : 1 − ε ≤ p(Gi)

p(¬H) · l′′(y′′
i )

≤ 1 + ε for i = 1 . . . n′′.

Take acts f , f ′ and f ′′ such that f(s) = yi if s ∈ Ai ⊕Bi for i = 1 . . . n, f ′(s) = y′
i if s ∈ Ci ⊕Di

for i = 1 . . . n′, and f ′′(s) = y′′
i if s ∈ Fi ⊕ Gi for i = 1 . . . n′′. Then [f ]p � l 	1 l′ � [f ′]p. It

follows that [f ]p 	1 [f ′]p and by (A.11), f 	 f ′. Two cases are possible.

1. fHf ′′ 	 f ′Hf ′′. Let g = fHf ′′ and g′ = f ′Hf ′′. Then

‖[g]p − ( 1
2 l + 1

2 l′′)‖ ≤ ‖[fHf ′′]p − (p(H) · l + (1 − p(H)) · l′′)‖+
‖(p(H) · l + (1 − p(H)) · l′′) − ( 1

2 l + 1
2 l′′)‖ ≤ ε + 2 · |p(H) − 1

2 |.
Analogously, ‖[g′]p − ( 1

2 l′ + 1
2 l′′)‖ ≤ ε + 2 · |p(H) − 1

2 |.

2. f ′Hf ′′ � fHf ′′. If f ′′Hf ′ � f ′′Hf then by P2(R), f ′ � f ′Hf � fHf = f which
contradicts f 	 f ′. Hence, the strict preference f ′′Hf ′ � f ′′Hf is impossible, and
f ′′Hf 	 f ′′Hf ′. Let g = f ′′Hf and g′ = f ′′Hf ′. Then

‖[g]p − ( 1
2 l + 1

2 l′′)‖ ≤ ε + 2 · |p(H) − 1
2 |;

‖[g′]p − ( 1
2 l′ + 1

2 l′′)‖ ≤ ε + 2 · |p(H) − 1
2 |.

As ε > 0 and |p(H)− 1
2 | can be arbitrarily small, there exist sequences {gi}∞i=1 and {g′i}∞i=1 such

that {[gi]p}∞i=1 and {[g′i]p}∞i=1 converge to 1
2 l + 1

2 l′′ and 1
2 l′ + 1

2 l′′ respectively, and gi 	 g′i for all
i. Thus, 1

2 l + 1
2 l′′ 	1

1
2 l′ + 1

2 l′′.
Step 7. Suppose that 	 is represented by

f 	 f ′ ⇔ [f ]p 	′
1 [f ′]p for all f, f ′ ∈ G,

where the binary relation 	′
1 ranks L and is complete, transitive, continuous, and weakly

monotonic. Fix lotteries l 	′
1 l′. For all acts g and g′ such that [g]p � l + o and l′ + o � [g′]p.

[g]p 	′
1 l 	′

1 l′ 	′
1 [g′]p implies g 	 g′. By (A.13), l 	1 l′. Fix lotteries l 	1 l′ and

sequences {gi}∞i=1 and {g′i}∞i=1 that satisfy (A.12). Then lim
i→∞

[gi]p = l, lim
i→∞

[g′i]p = l′, and for all

i, [gi]p 	′
1 [g′i]p because gi 	 g′i. By continuity, l 	′

1 l′. Thus, 	′
1=	1.
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The version of the von Neumann–Morgenstern Theorem due to Herstein–Milnor [12] asserts
that 	1 is represented by expected utility:

U(l) =
∑
x∈X

u(x) · l(x) for l ∈ L,

where u : X → R is a non-constant utility index, which is unique up to a positive linear
transformation.

Theorem 4.1(II)

Suppose that 	 satisfies P1(R), P3(R), P4∗(R), P5(R), and P6∗(R).29

With a slight abuse of notation, let x denote the degenerate lottery that yields the outcome
x with probability 1. Call a binary relation 	1 on L semi-strictly monotonic if it is weakly
monotonic and if for all outcomes x �1 x′ and weights α, β ∈ [0, 1],

α > β ⇒ α · x + (1 − α) · x′ �1 β · x + (1 − β) · x′.

Show that 	 is represented by

f 	 f ′ ⇔ [f ]p 	1 [f ′]p for all f, f ′ ∈ G,

where the binary relation 	1 ranks the set L of all lotteries and is non-degenerate, complete,
transitive, continuous, and semi-strictly monotonic.

Proof. One can adapt the proof from Theorem 3.1 by making the following changes.
Show that 	1 is transitive. Fix arbitrary lotteries l, l′, l′′ such that l 	1 l′ 	1 l′′. Suppose

that l′′ �1 l. By (A.14), [g]p � l + o and l′′ + o � [g′′]p for some acts g′′ � g. There exists an
act f such that f(S) = X and g′′ � f � g.30 Take a finite collection E ⊂ R such that the acts
h and g are E-measurable. By P6∗(R), there exists a partition {S = Sm

1 } ⊂ R� E such that for
all i and for all acts h ∈ G � {¬Si},

h 	 f ⇒ x∗Sih � g.

Let E = Sk be a non-null element of this partition. By Lemma A.4, there exists an act
h′ ∈ G � {¬E} such that [x∗Eh′]p � l′ + o � [x∗Eh′]p. Two cases are possible.

1. f 	 x∗Eh′. Then g′′ � f 	 x∗Eh′ and by (A.14), l′′ �1 l′.

2. x∗Eh′ 	 f . Then by P6∗(R), x∗Eh′ � g and by (A.14), l′ �1 l.

29This set of axioms is stronger than P1(R), P3(R), P4∗(R), P5(R), P6(R) because P6∗(R)
implies P6(R).

30More precisely, construct f as follows. Find a non-null event E and h ∈ G �{¬E} such that
g′′ � x∗Eh � x∗Eh � g. Partition E into |X| non-null events, and take an act f such that f

yields different outcomes on all elements of this partition and f = h on ¬E. Then f(S) = X,
and by P3(R), x∗Eh 	 f 	 x∗Eh. Thus, g′′ � f � g.
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Figure 2: Extended risk preference that is not strictly monotonic

Either case contradicts l 	1 l′ 	1 l′′. Thus, the strict preference l′′ �1 l is impossible and
l 	1 l′′ holds.

Show that 	1 is semi-strictly monotonic. Fix outcomes x � x′ and weights α > β. By
Lemma A.2, there exist events A and B such that α > p(A) > p(B) > β. Then

α · x + (1 − α) · x′ � [xAx′]p �1 [xBx′]p � β · x + (1 − β) · x′ ⇒
α · x + (1 − α) · x′ 	1 [xAx′]p �1 [xBx′]p 	1 β · x + (1 − β) · x′.

Thus, α · x + (1 − α) · x′ �1 β · x + (1 − β) · x′.

As the weak order 	1 is continuous and semi-strictly monotonic on all of L, then for any
l ∈ L, there exists a unique value V (l) ∈ [0, 1] such that

l ∼1 V (l) · x∗ + (1 − V (l)) · x∗.

The function V : L → [0, 1] so defined represents 	1 and hence, for all acts f, g ∈ G,

f 	 g ⇔ [f ]p 	1 [g]p ⇔ V ([f ]p) ≥ V ([g]p).

The function V : L → [0, 1] is continuous because 	1 is continuous and is uniformly continuous
because L is a compact set. When restricted to Lp, the function V is uniformly continuous and
strictly monotonic because 	1 is strictly monotonic on Lp.

Note that in general, the extended risk preference 	1 and the representation V need not
be strictly monotonic on all of L. Indeed, it is intuitive that indifference curves that are strictly
monotonic over Lp can converge to curves that are not strictly monotonic. Figure A.3 illustrates
this intuition in the coin-tossing framework of Section 5.2 where there is no event A ∈ R such
that p(A) = 1

3 . We skip a formal example.
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Extensions to the General Case

Consider the general case when the set of outcomes X is infinite.
The construction of risk preference 	1 in Theorem 4.1(I) remains unchanged. This binary

relation is non-degenerate, complete, transitive, and strictly monotonic on Lp. Given a finite
Y ⊂ X, 	1 is continuous on L(Y ) ∩ Lp and by definition, is continuous on Lp.

Suppose that 	 satisfies P1(R), P2(R), P3(R), P4(R), P5(R), and P6(R), as in Theo-
rem 3.1. Fix outcomes x � x′, and let p : R → [0, 1] be the probability measure given by (A.6).
For all finite Y ⊂ X such that x, x′ ∈ Y , the preference over acts f ∈ G that have range in Y ,
f(S) ⊂ Y , has a unique expected utility representation

U(f) =
∑
y∈Y

u(y) · p(f−1(y))

such that u(x) = 1 and u(x′) = 0. As all of these representations are unique, then

U(f) =
∑
x∈X

u(x) · p(f−1(x))

represents 	 over all of G.
Finally, one can construct a utility representation V in the general case of Theorem 4.1

analogously to Step 5 of Machina–Schmeidler’s proof of their Theorem 2.

A.4 Necessity of Axioms

Theorem 4.1(I)

Suppose that 	 on G is represented by

f 	 g ⇔ [f ]p 	1 [g]p for f, g ∈ G,

where p : R → [0, 1] is a finely ranged probability measure, and the binary relation 	1 on Lp is
non-degenerate, complete, transitive, continuous, and strictly monotonic.

Then 	 satisfies P1(R) and P5(R) because 	1 is non-degenerate, complete and transitive.
Next, for each event A ∈ R, one of the following cases applies.

1. p(A) > 0. Then for all outcomes x, y ∈ X and for all acts h ∈ G � {¬A},

x 	 (�)y ⇒ [xAh]p � (� )[yAh]p ⇒
[xAh]p 	1 (�1)[yAh]p ⇒ xAh 	 (�)yAh ;

it follows that x 	 y if and only if xAh 	 yAh.

2. p(A) = 0. Then for all outcomes x, y ∈ X and for all acts h ∈ G�{¬A}, [xAh]p = [yAh]p,
[xAh]p ∼ [yAh]p, and xAh ∼ yAh.
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Thus, 	 satisfies P3(R).
Next, for all events E ∈ R, for all partitions E = A ∪ A′ and E = B ∪ B′, for all outcomes

x � x′ and z � z′, and for all acts h, h′ ∈ G � {¬E},
p(A) ≥ (>)p(B) ⇒ [(xAx′)Eh]p � (� )[(xBx′)Eh]p ⇒
[(xAx′)Eh]p 	1 (�1)[(xBx′)Eh]p ⇒ (xAx′)Eh 	 (�)(xBx′)Eh.

Therefore, (xAx′)Eh 	 (xBx′)Eh ⇔ p(A) ≥ p(B) ⇔ (zAz′)Eh′ 	 (zAz′)Eh′. Thus, 	
satisfies P4∗(R).

Finally, show that 	 satisfies P6(R). Without loss of generality, X is finite. Fix an outcome
x ∈ X, a finite collection E ⊂ R, and a pair of E-measurable acts f � g. By continuity of the
risk preference 	1, there exists δ > 0 such that l �1 [g]p for all l ∈ Lp in the δ-neighborhood
of [f ]p, and [f ]p �1 l′ for all l′ ∈ Lp in the δ-neighborhood of [g]p. Partition S into events
{S1, . . . , Sm} ⊂ R � E such that p(Si) < δ

2 for all i = 1 . . . m. Then [xSif ]p lies in the δ-
neighborhood of [f ]p; hence, [xSif ]p �1 [g]p and xSif � g. Analogously, f � xSig.

Theorem 4.1(II)

Suppose that 	 is represented by U(f) = V ([f ]p) where V : L → R is uniformly continuous.
Prove that 	 satisfies P6∗(R). Without loss of generality, X is finite. Fix an outcome x ∈ X,
a finite collection E ⊂ R, and a pair of E-measurable acts f � g. Let ε = V ([f ]p) − V ([g]p). As
V is uniformly continuous, there exists δ > 0 such that for all l, l′ ∈ Lp,

‖l − l′‖ < δ ⇒ |V (l) − V (l′)| < ε.

Partition S into events {S1, . . . , Sm} ⊂ R � E such that p(Si) < δ
2 for all i = 1 . . . m. Then for

all i and for all acts h ∈ G � {¬Si} such that h 	 f ,

‖[h]p − [xSih]p‖ ≤ 2 · p(Si) < δ ⇒ |V ([h]p) − V ([xSih]p)| < ε ⇒
V ([xSih]p) > V ([h]p) − ε ≥ V ([f ]p) − ε = V ([g]p) ⇒ xSih � g.

Analogously, f � xSih for all i and for all acts h ∈ G � {¬Si} such that h � g .

Theorem 3.1

Suppose that 	 is represented by expected utility:

U(f) =
∑
x∈X

u(x) · p(f−1(x)) for f ∈ G.

Prove that 	 satisfies P2(R). For all events A ∈ R, acts f, g ∈ G � {A} and outcomes x, y,

U(fAx) = u(x) · p(¬A) +
∑
z∈X

u(z) · p(f−1(z) ∩ A)

U(gAx) = u(x) · p(¬A) +
∑
z∈X

u(z) · p(g−1(z) ∩ A)

U(fAy) = u(y) · p(¬A) +
∑
z∈X

u(z) · p(f−1(z) ∩ A)

U(gAy) = u(y) · p(¬A) +
∑
z∈X

u(z) · p(g−1(z) ∩ A).
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It follows that U(fAx) ≥ U(gAx) if and only if U(fAy) ≥ U(gAy), that is, fAx 	 gAx if and
only if fAy 	 gAy.
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