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Abstract

I study auctions in which there exists an asymmetry in bidders’ knowledge about
their interdependent valuations. Bidders consist of two groups: the insiders, who
are perfectly informed of their valuations, and the outsiders, who only observe one-
dimensional signals, thus being partially informed of their valuations. When only one
insider and one outsider exist, both English and second-price auctions allocate the good
efficiently while a first-price auction fails to do so. When there are more than two
bidders with at least one insider and one outsider, a second-price auction is no longer
efficient. By contrast, under plausible conditions on bidders’ valuations, an English
auction implements the efficient allocation. I also study the revenue implication of the
knowledge asymmetry, showing that the revenue generated from an English auction in-
creases when an outsider is replaced by an insider with the same valuation (i.e., as more
bidders become informed of their valuations). My results apply to a class of auctions in
which bidders’ valuations consist of common and private value components, with some
bidders informed of the common component and others uninformed of it.
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1 Introduction

In many auctions, some bidders have better knowledge than others about the value of
the auctioned object. In the auctions of artworks, the experts are presumably better at
appraising the value of those works than laymen. In a takeover auction, the bidders who
own toeholds (existing shares of the target firm) may have the firm’s inside information not
available to others, and thus have better knowledge about the value of the target firm.1

This knowledge asymmetry seems more pronounced when a current management team of
the target firm participates in the bidding competition (management buyouts or MBO).2

Another example of the knowledge asymmetry is the sale of drainage tracts in auctions for
gas and oil leases (OCS auctions). Hendricks and Porter (1988) find that the firms who own
neighboring tracts are better informed of the value of a lease than non-neighborhood firms.
This paper presents a simple model of knowledge asymmetry in which the efficiency and
revenue performance of the standard auctions such as first-price, second-price, and English
auctions is explored. In my model, bidders consist of two types: the insiders who are
perfectly informed of their valuations, and outsiders who observe one-dimensional signals
containing only partial information about their valuations.

As is plausible with above examples, I assume that bidders’ valuations are interdepen-
dent, which means that an outsider must infer other outsiders’ and insiders’ information
to assess his valuation.3 The standard information case without knowledge asymmetry is
a special case of this model in which every bidder is an outsider. An important concern
is whether standard auctions can allocate the object efficiently. There has been a growing
interest in the allocative efficiency of auctions with auctions being increasingly used as a
method of selling assets owned by the governments, whose primary objective is efficient
allocation. Many of these auctions have interdependent value feature since, for instance,
bidders in a spectrum right auction have only partial information about the future demand
of a given PCS market, which is common to all bidders.

With interdependent values, the efficiency is not readily attainable even in the standard
information case. To achieve efficiency, an auction format must provide bidders with in-
centives to reveal their information, thus enabling other bidders to assess their valuations
accurately and to adjust their bidding strategies properly based on the revealed information.

1See Bulow, Huang, and Klemperer (1999) for an analysis of toeholders in auctions.
2Shleifer and Vishny (1988, p.96) argue that managers’ special information about their companies is one

reason for MBO’s.
3In art auctions, for example, the appraisal of an auctioned work by experts helps laymen estimate its

values to them.
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What is crucial for the inference is the relationship between the bidders’ equilibrium bid-
ding behavior and underlying signals. In most existing models, the precise inference about
signals is possible due to the assumption of one-dimensional signals, which can be revealed
accurately if bidders adopt monotone bidding strategies. In my model, the presence of in-
siders poses a nontrivial inference problem since they essentially know the multidimensional
profile of signal vectors, whose inference is not guaranteed by the monotonicity of bidding
strategies. To illustrate, suppose that there are three bidders whose valuations are given by
vi(s1, s2, s3), i = 1, 2, 3. Assume that bidder 3 is an insider who knows the entire signal vec-
tor while an outsider i = 1 or 2 knows si only.4 Consider an ascending-bid English auction
in which the insider employs the weak dominant strategy of dropping out at his valuation
v3. The signals, s1 and s2, can be easily inferred from outsiders’ drop-out prices, given
that they are monotone with their one-dimensional signals. On the other hand, there is no
guarantee that the insiders’ signal, s3, can be precisely inferred from his bidding behavior
since v3 is affected by the entire profile of signals. For instance, a higher value of v3 does
not necessarily mean a higher s3. The focus of the current paper is whether a standard
auction admits equilibrium strategies that overcome the inference problem caused by this
multidimensionality of insiders’ information.

The main finding of the current paper is that the English auction can implement the
efficient allocation, given plausible restrictions on the valuation functions whereas the sealed-
bid auctions, such as first-price or second-price, cannot. As mentioned above, it is important
whether a given auction format allows outsiders to learn a sufficient amount of others’
information and adjust their bidding strategies accordingly. The sealed-bid auctions, by
their very nature, provide no new information in the bidding stage. By contrast, English
auctions can induce bidders to reveal their information through the prices at which they
drop out of the bidding competition. As is the case in the existing literature, the outsiders’
signals are revealed through their adoption of monotone strategies. But, revealing insiders’
signals requires more sophisticated inference procedure, exploiting the fact that the insiders’
drop-out prices are equal to their valuations and thus convey a different kind of information
from outsiders’ drop-out prices. Unlike outsiders’ signals which are revealed completely at
the time they drop out, insiders’ signals are never fully revealed in my construction, but
rather updated continuously even after they drop out of the auction.

This paper is organized as follows. Section 2 introduces the model. In Section 3,
4In fact, to know the entire profile of signals is more than necessary for an insider to know his valuation.

While my model is more general and encompasses this case, I take this case to highlight the multidimensional

property of insiders’ bidding behavior.
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I analyze the standard auctions for the case of two bidders. Given the single-crossing
property, the second-price auction, which is equivalent to the English auction in this case,
can implement an efficient allocation while the first-price auction cannot do so in general.5

Section 4 which is the main part of the current paper studies second-price and English
auctions in the case of more than two bidders. It is first observed that the second-price
auction is no longer efficient. Then, I construct an ex-post equilibrium of the English
auction which implements an efficient allocation, provided that the valuation functions
satisfy a condition called single crossing on indifference curves (SCIC). I also provide a
sufficient condition which guarantees both SCIC and the existence of equilibrium.

Section 5 provides a revenue implication of the knowledge asymmetry by studying how
the presence of insiders affects the revenue in English auctions. Specifically, I find that the
revenue rises as an outsider is replaced by an insider with the same valuation, that is one
more bidder becomes informed of his valuation. This result is similar in spirit to Milgrom
and Weber (1982)’s linkage principle, but there is an important difference. In the current
exercise, only one more bidder enjoys the better information, unlike Milgrom and Weber’s
case in which the additional information is made public to all bidders.6 Also, the asymmetry
in bidding strategies requires a completely different argument to establish the result, and
my result does not depend on the affiliation among signals but holds even when the signals
are independent. Furthermore, the revenue enhancement holds ex post, not merely ex ante
as in Milgrom and Weber (1982). In Section 6, I show that all the previous results about
efficiency and revenue hold in a class of auctions in which valuations are additively separable
into the private and common value components, and insiders are informed of both common
and private components while outsiders are only informed of private component.

The current paper is related to two branches of literature. Engelbrecht-Wiggans, Mil-
grom, and Weber (1982) study knowledge asymmetry in a special pure common value first-
price auction model in which a single insider has proprietary information and other bidders
have a public, or equivalently, no information. Hendricks and Porter (1988) and Hendricks,
Porter, and Wilson (1994) apply and extend their analysis to the case of the drainage tracts
in auctions for oil and gas leases. No efficiency issue arises in the pure common value case,
however. By contrast, the interdependent value framework of the current study permits
a meaningful study of efficiency. Further, I explores the revenue implication of knowledge
asymmetry.

The second branch of literature concerns the allocative efficiency in the interdepen-
5Kim and Che (2002) show that first-price auction cannot implement the efficient allocation even in the

private value case, when bidders have an asymmetric knowledge about rivals’ types.
6For a treatment of the linkage principle, refer to Krishna (2002).
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dent value environment without the knowledge asymmetry. Ausubel (1999), Dasgupta and
Maskin (2000), and Perry and Reny (2002) construct abstract mechanisms which imple-
ment efficient allocation under a fairly weak condition, the single crossing condition. Chung
and Ely (2002) and Mey-ter Vehn and Moldovanu (2002) provide the characterizations of
ex-post implementable mechanisms in the interdependent value setup. Krishna (2001) is
most closely related to this paper. He constructs an efficient ex-post equilibrium for English
auctions in the standard information case, and also provides a sufficient condition, called
the average crossing condition, that allows for such an equilibrium to exist.7 In Krishna’s
equilibrium, a bidder drops out of an auction as soon as his break-even signal, which is
calculated at each price level and strictly increases with it, equals his true one. Thus, each
bidder’s signal is precisely revealed as he drops out. While the same is true for outsiders’ sig-
nals in my model, the inference of insiders’ signals required a nontrivial change of outsiders’
strategies and their inference procedures.

2 Model

A seller employs an auction to sell an indivisible object to one of n bidders. The value of the
object to bidder i is a function of n-dimensional signal profile s ∈ Rn and denoted by vi(s).
It is assumed that vi is twice continuously differentiable with regard to s and vi(0) = 0 for
all i. At this point, I do not specify who observes what signals, which is a central part of
the knowledge asymmetry modelling and will be done in the next paragraph. Still, I adopt
the convention of calling ith signal, si, bidder i’s signal. Letting N denote the set of all
bidders, let s = (sk)k∈N , sA = (sk)k∈A for A ⊂ N and s−i = (sj)j 6=i.8 The signal profile
s is distributed according to F : Rn → [0, 1] with density f . I restrict the support of F to
[0, 1]n ⊂ Rn. The allocation in which the object goes to a bidder with the highest valuation
for every realization of the signal profile is said to be efficient. The following single crossing
condition is necessary to guarantee the efficient allocation:

∂vi

∂si
(s) >

∂vj

∂si
(s) for all s and i 6= j. (1)

This is a requirement that the ith signal affects bidder i’s valuation more than other bidders’
valuations. Furthermore, I assume that for all i and j

∂vi

∂sj
(s) ≥ 0 for all s,

7Krishna (2001) provides another sufficient condition, called cyclical single crossing condition.
8Throughout this paper, bold face letters are used to denote vectors.
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with a strict inequality when i = j. I also assume that though the signal profile is realized
only in [0, 1]n, there exist two signals sk ≤ 0 and sk ≥ 1 for each k such that for any i and
s ∈

∏n
k=1[sk, sk],

vi(s) > vj(s) if si = si and sj ≤ 1, and vi(s) < 0 if si = sk. (2)

This is to ensure that the equilibrium constructed for English auction is well defined. In case
some uncertainty remains after a signal profile is realized, i’s valuation is better described
as

vi(s) = E[ui|s],

where ui is the value of the object to bidder i with which s is affiliated. Then, the definition
of efficiency changes so that the bidder with the highest expected value conditional on a
given signal profile obtains the object. This change requires bidders to be risk-neutral.9

Now, I turn to modelling the knowledge asymmetry. In most previous literature, bidders
are assumed to be symmetric in the sense that every bidder observes a one-dimensional
signal, which we will henceforth refer to as the standard (information) case. I depart from
those models by assuming that N is partitioned into two types of bidders, insiders and
outsiders, who are heterogenous in the degrees to which they know about their valuations.
Formally, an insider i knows the value of vi(s) for every realization s while an outsider j

only knows sj . I impose no restriction on the number of insiders or outsiders other than
that there be at least one insider and one outsider. Importantly, the information structure
described so far is common knowledge among bidders. In particular, outsiders know who
insiders are.

I assume that each insider employs a weak dominant strategy of bidding (dropping out
at) his valuation in a second-price (English) auction. Thus, the analysis of second-price and
English auctions goes without further describing what information insiders have about the
signal profile besides the knowledge about their valuations. For the analysis of the first-price
auction, however, I consider two polar cases consistent with the insiders’ knowledge:

Case 1 : An insider i knows the realized value of vi(s), but nothing else.

Case 2 : An insider i knows the realized signal profile s.

An insider’s information can be multidimensional in the sense that it encompasses an infor-
mation structure such as Case 2.10 While the two cases are identical in terms of an insider’s

9Without risk-neutrality, risk sharing would be another factor to be considered in determining whether

a given allocation is efficient.
10For example, this case can fit into a sale of an art work where an expert knows every aspect of the work
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knowledge about his valuation, he has more refined knowledge about others’ signals in Case
2 than in Case 1. Thus, these cases should be dealt with separately for the analysis of
first-price auctions.11,12

3 Standard Auctions with Two Bidders

In this section, I study the standard auctions when there is only one insider. Suppose that
bidder 1 is an insider. The following proposition establishes the efficiency of the second-price
auction, which is equivalent to the English auction when there are only two bidders.13

Proposition 1 In all undominated equilibria of the second-price (or English) auction, the
object is efficiently allocated.

Proof. Obviously, the only undominated strategy of bidder 1 is to bid v1(s) for every
realization s. For bidder 2’s best response, suppose that b2(s2) is an optimal bid for a fixed
signal s2 ∈ [0, 1]. Then, the following must be true ;

b2(s2) ≤ v2(0, s2) if v1(0, s2) > v2(0, s2)

= v2(α, s2) if v1(α, s2) = v2(α, s2) for some α

≥ v2(1, s2) if v1(1, s2) < v2(1, s2).

(3)

Assume first that v1(0, s2) > v2(0, s2), which by the single crossing property, implies that
v1(s1, s2) > v2(s1, s2) for every s1 ∈ [0, 1], so it is efficient for bidder 1 to obtain the object
regardless of s1. Given bidder 1’s strategy, the winning surplus of bidder 2 is negative

which is needed to determine its value, while a non-expert only knows one aspect, say its position in art

history, which he is more interested in than other aspects. I thank Phil Reny for suggesting this example.
11In the first-price auction, a bidder wants to shade his bid below his valuation and the ability to do so

is affected by the information he has about his rivals. For instance, Kim and Che (2002) show how the

information about rivals’ types can affect the performance of the first-price auction in the private value

framework.
12Note that the existing literature—for example, Milgrom and Weber (1982) or Krishna (2001)—provides

equilibria for second-price and English auctions in which each bidder i’s strategy only depends on si. This

strategy is not even feasible in Case 1 since each insider only knows his value and does not have an accurate

information about any signal. In Case 2, while feasible, such a strategy is not plausible as an equilibrium

since it would require insiders to employ a dominated strategy.
13The basic difference between English and second-price auctions is that in the former, a bidder can

observe the prices at which others have dropped out, and make inferences about their signals, while in the

latter, he cannot. When there are two bidders, however, no such information is available in either auction.

Since the price and allocation are determined in the same manner, the two auctions are equivalent so that

only the second-price auction is analyzed.
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for any s1. To avoid this loss, bidder 2 must bid no greater than v1(0, s2). In fact, any
b ≤ v1(0, s2) is optimal. A similar argument will establish that an optimal bid must be at
least v2(1, s2) if v1(1, s2) < v2(1, s2), which results in efficient allocation. Lastly, assume that
v1(α, s2) = v2(α, s2) for some α. Note that this α is unique due to the single crossing. The
optimal bid of bidder 2 must be b2(s2) = v1(α, s2) = v2(α, s2), so bidder 2 wins if and only
if s1 < α or v1(s1, s2) < v2(s1, s2) because of the single crossing, resulting in the efficient
allocation. Bidder 2 has to submit a bid in the range b ∈ [v1(0, s2), v1(1, s2)], otherwise it
would be dominated by either v1(0, s2) or v1(1, s2). Then, there exists φ1(b, s2) ∈ [0, 1] such
that v1(φ1(b, s2), s2) = b. With such b, 2’s payoff is∫ φ1(b,s2)

0
(v2(s1, s2)− v1(s1, s2))fS1|S2

(s1|s2)ds1, (4)

where fS1|S2
(·|·) is the conditional density. The integrand is positive if and only if s1 < α.

So, the payoff will be maximized when the integration is taken only in this range, which
can be done by setting b = v1(α, s2) = v2(α, s2). Q.E.D.

Note that the equilibrium strategy of bidder 2 described in (3) is identical to that of
Maskin (1992) in the standard case, where the bidder 1 employs the same type of equilibrium
strategy. Now, bidder 1, an insider, switches to bidding his own valuation whereas the other
bidder maintains the same strategy. It is important to note that by restricting attention
to undominated equilibria, the equilibrium allocation is always efficient. This stands in
contrast to the standard case where there exist a plethora of inefficient (undominated)
equilibria for second-price auctions.14,15

Another widely used auction format is the first-price auction in which the highest bidder
wins and pays his bid. While no characterization of equilibrium is available, it is possible

14Refer to Bikhchandani and Riley (1991) for the common value case and Chung and Ely (2001) for the

interdependent value case.
15It is also worth mentioning the different roles the single crossing property plays for the existence of

the equilibrium strategy in the standard case and in my case. In the standard case, the bidding strategy

of Maskin(1992) is an equilibrium even with the exact opposite of the single crossing condition that one’s

valuation is more affected by the other’s signal. The single crossing property is only needed to guarantee the

efficiency of the equilibrium allocation. In my model, however, the single crossing property is indispensable

for the strategy given in (3) to be an equilibrium. To see it, check the second order (necessary) condition of

bidder 2’s problem by differentiating (4) twice and evaluating the resulting expression at φ1 = α to get(
∂φ1

∂b

)2 (
∂v2

∂s1
− ∂v1

∂s1

)
≤ 0.

Thus, the single crossing property is necessary for the existence of an undominated equilibrium in my model.

As long as such an equilibrium exists, it leads to efficient allocation.
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to show that efficient allocation is not available in either Case 1 or Case 2.

Proposition 2 Suppose also that ∂v1
∂s2

, ∂v2
∂s1

> 0 (that valuations are strictly interdependent).
Then, the following holds:

1. In Case 1, the first-price auction is not efficient.

2. In Case 2, the first-price auction is not efficient if the density is bounded such that
for some finite R > 1,

1
R

< f(s) < R for all s. (5)

Proof. See Appendix C.

Part 1 of Proposition 2 can be readily established because bidder 1, who knows bidder 2’s
signal and thus his bid for certain, can outbid him whenever profitable. This makes bidder
2 suffer a loss, provided the equilibrium allocation is efficient. In Case 2 where bidder 1 only
knows v1 but not the entire signal profile, the inefficiency is not as readily established. The
reason is that while certain about his own valuation, bidder 1 is now uncertain about the
opponent’s bidding strategy, which makes the above argument unavailable. Still, efficient
allocation is not possible with a wide class of signal distributions.16 This inefficiency of the
first-price auction is expected to persist and become more severe as the number of bidders
increases. From now on, hence, our analysis will focus on second-price and English auctions.

4 Second-price and English Auctions with More Than Two

Bidders

This section explores second-price and English auctions in which there are more than two
bidders including at least one insider and one outsider. The two auctions are no longer
equivalent since the drop-out prices are observed by bidders in the English auction, which
allows bidders to gather more information during the bidding process than the second-price

16The proof of this can be explained at an intuitive level as follows. Bidder 2 with any given signal can

ignore the possibility that bidder 1 has a valuation close to 0 and submits a very low bid, which follows from

the assumption of the bounded density given in (5). By contrast, bidder 1 with a valuation close to 0 should

predict with a probability bounded away from 0 that bidder 2 observes a signal close to 0 and submits a

very low bid. Thus, he will bid much less aggressively than does bidder 2 with a signal close to 0, causing

an inefficiency.
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auction does. This will turn out to make a significant difference in the capability of the two
auctions to implement an efficient allocation.

I first prove that the efficiency of second-price auction does not go through in the n ≥ 3
bidder case. The result is established with generic valuation functions. It is also shown that
an inefficiency always arises in the symmetric case. The valuations are symmetric if it is
true that

vi(s) = v(si; s−i), (6)

where v is constant with any permutation of s−i. Note that along with symmetry, the single
crossing property implies that whoever holds the highest signal has the highest valuation.

Theorem 1 Assume that ∂vj

∂si
(s) > 0 for all i 6= j. Assume also that in the efficient

allocation, insiders obtain the object with some positive probability less than one.17 Then,
for generic valuation functions, there does not exist any efficient equilibrium for the second-
price auction. In particular, no symmetric valuation admits the efficient allocation.

Proof. See Appendix C.

In a similar setup where outsiders are totally uninformed, Compte and Jehiel (2002) provide
an example where no efficient equilibrium exists for the second-price auction. They assume
that it is never efficient for an insider to obtain the good. By contrast, the above theorem
establishes an inefficiency in case efficient allocation requires both outsiders and insiders to
obtain the good with positive probabilities. In this sense, my result complements Compte
and Jehiel’s, and in fact, do so with much more general valuations while the valuation
function in their example is linear. The main idea of the proof is simple and illustrated in
the following example.

Example 1 Suppose that there are three symmetric bidders with vi(s) = asi +
∑

j 6=i sj,
where a > 1 satisfies the single crossing condition. Note that whoever has a higher signal
has a higher value. Bidder 3 is assumed to be the only insider, who bids his value v3(s) =
as3 + s1 + s2. Suppose for a contradiction that an efficient equilibrium exists. Then, the
equilibrium bid b2(s2) of bidder 2 with any given s2 ∈ [0, 1] has to satisfy

max
{(s′1,s′3)|s2≥max{s′1,s′3}}

v3(s′1, s2, s
′
3) ≤ b2(s2) ≤ min

{(s′1,s′3)|s′3≥max{s′1,s2}}
v3(s′1, s2, s

′
3) (7)

17That is, in the efficient allocation, both insiders and outsider obtain the object with positive probabilities.
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If the first inequality is violated, then bidder 2 cannot obtain the good when he has the
highest value. Likewise, the second inequality is necessary for bidder 1 to get the good when
he is an efficient bidder. However,

max
{(s′1,s′3)|s2≥max{s′1,s′3}}

v3(s′1, s2, s
′
3) = (a+2)s2 > (a+1)s2 = min

{(s′1,s′3)|s′3≥max{s′1,s2}}
v3(s′1, s2, s

′
3),

whenever s2 > 0.

The cause of this inefficiency is seen in equation (7) of the above example, where an
outsider’s bidding strategy that depends only on his own signal is not refined enough to
efficiently match with the strategy of an insider, which varies with the entire signal profile.

From now on, I focus my attention on the English auction to first demonstrate its
efficiency. Consider the Japanese format of English auctions, where bidders drop out of the
auction as the price rises continuously starting from zero until only one bidder remains and
is awarded the object at the last drop-out price. I first present the procedure to obtain an
ex-post equilibrium and then explore what conditions are needed for such an equilibrium
to exist and to be efficient. In the ex-post equilibrium I will construct, an outsider’s signal
is fully revealed via his drop-out price. The main difficulty of the analysis lies in the fact
that an insider’s signals cannot be fully revealed from his drop-out price since his drop-out
price reflects all the signals. However, I show that this does not prevent the English auction
from achieving the efficient allocation. Indeed, in the English auction, insiders’ signals can
be inferred, if not precisely, to such an extent that yields the efficient allocation.

Milgrom and Weber (1982) provide an efficient equilibrium for the English auction in
the standard case with symmetric bidders.18 Their result was extended by Krishna (2001)
to the setup in which bidders have interdependent and asymmetric valuations. The logic
underlying Krishna’s equilibrium construction can be explained by the following procedure:
(1) The signals of inactive bidders are fully revealed via their drop-out prices; (2) active
bidders take the signals of inactive bidders as inferred in (1), and calculate the break-even
signal profile of all active bidders as a function of the current price which would make each
of them break even by immediately dropping out; and (3) each active bidder stays in (exits)
the auction if his break-even signal at the current price is smaller (greater) than his true
signal. Indeed, this procedure yields an efficient equilibrium when there is no insider. In
the analysis that follows, I modify the above procedure to accommodate the presence of
insiders. One significant difference arises from being unable to apply step (1) to the signals

18Bikhchandani, Haile, and Riley (2002) characterize the entire set of symmetric separating (thus, efficient)

equilibria.
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of inactive insiders. The reason, as already mentioned, is that an insider drops out at his
valuation, which depends on the entire profile of signals.

In the equilibrium I present, step (1) still applies for the inference of inactive outsiders’
signals, in that their drop-out prices are increasing with their signals. Thus, inferences on
inactive outsiders’ signals remain unchanged once revealed. The signals of inactive insiders
remain unrevealed. The unrevealed signals of inactive outsiders and active bidders are
calculated as the (unique) solution of a system of equations. As explained in the next
paragraph, those equations extend Krishna (2001)’s system to incorporate any additional
information that the insiders’ drop-out prices convey. The drop-out decision of an outsider
is then to follow the same rule (3). I show that the procedure just described produces an
ex-post equilibrium.

To give a formal presentation of the above argument, I introduce a set of notations.
A denotes the set of active bidders. O and I denote the sets of outsiders and insiders,
respectively. Let pi denotes the price at which bidder i drops out. Then, pB = (pi)i∈B

with B being an arbitrary set of bidders. The price profile pN\A can be identified with
the history of the bidding game as N\A is the set of inactive bidders. Assuming that the
signals of inactive outsiders have been (correctly) revealed to be sO\A in the history pN\A,
the break-even signal profile (sA(p, pN\A), sI\A(p, pN\A)) at a current price p is defined to
be a (unique) solution of the following system of equations,

vk(sO\A, sA(p, pN\A), sI\A(p, pN\A)) =

{
p for k ∈ A

pk for k ∈ I\A.
(8)

Suppose that the signal profile of active bidders and inactive insiders were equal to the
break-even signal profile. Then, the first set of equalities in (8) says that the current active
bidders break even by immediately dropping out at the current price p, and the second
one that inactive insiders dropped out at their valuations. Put differently, given the other
signals, sA(p, pN\A) corresponds to the minimal level of active bidders’ signals at which they
do not suffer a loss by paying the current price. And, given the other signals, sI\A(p, pN\A)
must have been the signal profile of inactive insiders since they have dropped out at their
valuations. Note that since sI\A(p, pN\A), the inference about the inactive insiders’ signal
profile, is never accurate, it is being continuously updated as the price rises.

When setting up equation (8), I assumed that the signals of inactive outsiders are
correctly revealed as sO\A, which requires outsiders to adopt separating bidding strategies.
In other words, a positive measure of an outsider’ types should not drop out at the same
price. In order to guarantee it, the break-even signals of active bidders must (strictly)
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increase with the price level, which is stated here as a condition. From now on, I will leave
out the argument pN\A to simplify notations.

Condition EMS (Existence of Monotone Solution) For every sO\A and pN\A, there ex-
ists a unique set of differentiable functions sA : R+ →

∏
k∈A[sk, sk] and sI\A : R+ →∏

k∈I\A[sk, sk] such that (1) equation (8) holds for all p ∈ [maxk∈N\A pk,mink∈O∩A s−1
k (1)]

and (2) sA(p) is strictly increasing.

Later, I will provide more primitive condition imposed on bidders’ valuation functions
to ensure that EMS holds. The following proposition says that an ex-post equilibrium exists
in which an active outsider drops out at the price level that makes his true signal equal to
the break-even signal.

Theorem 2 Suppose that EMS holds. Then, an ex-post equilibrium exists in which each
k ∈ O ∩A drops out at p if and only if sk ≤ sk(p).

Proof. See Appendix A.

Example 1 demonstrates how the strategy described in Theorem 2 works.

Example 2 Recall Example 1, where three bidders have symmetric linear valuations and
bidder 3 is an insider. Calculate the break-even signals as a function of p in all possible
history. Inverting the break-even signals will yield the drop-out prices for any given signal.
When A = {1, 2, 3} or when no one has yet dropped out, si(p) = p

a+2 , implying that bidder
i with si plans to drop out when the price reaches (a+2)si. After an outsider j 6= 3 with sj

drops out first and his signal is correctly inferred, the other (active) outsider i with si sets
si(p) = 1

a+1(p−sj), planning to drop out when the price reaches (a+1)si +sj. The analysis
so far is similar to the standard case. It differs if insider bidder 3 drops out first, in which
case the break-even signals of the two remaining outsiders are the first two components of
the solution of a 1 1

1 a 1
1 1 a


s1

s2

s3

 =

 p

p

p3

 . (9)

Some algebra shows that si(p) = ap−p3

(a+2)(a−1) for i = 1, 2 and s3(p) = (a+1)p3−2p
(a+2)(a−1) . Thus, i drops

out when the price reaches (a + 1)si + 1
a(p3 − 2si), which is increasing with si since a > 1.

Noteworthy are two facts concerning s3(p), the inference about the insider’s signal. First,
s3(p) is decreasing with p. This is intuitive because staying active at a higher price implies
higher signals of outsiders, which in turn implies a lower signal of an inactive insider since
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Valuation Ranking 1st Drop-Out Price 2nd Drop-Out Price

(i) s3 > max{s1, s2} v3 > max{v1, v2} (a + 2) min{s1, s2}
(a+1)max{s1, s2}+
min{s1, s2}

(ii) s1 > max{s1, s2},
(a + 1)s2 > as3 + s1

v1 > v2 > v3 p3 = as3 + s1 + s2
p2 = (a + 1)s2 +
1
a(p3 − 2s2)

(iii) s1 > s2 > s3,

(a + 1)s2 < as3 + s1

v1 > v2 > v3 p2 = (a + 2)s2 p3 = as3 + s1 + s2

(iv) s1 > s3 > s2,

(a + 1)s2 < as3 + s1

v1 > v3 > v2 p2 = (a + 2)s2 p3 = as3 + s1 + s2

Table 1: The Outcome of The Equilibrium Bidding Strategy

the resulting valuation of an insider is set at its true level p3 = v3 as seen in (9). Second,
s3(p) > s3 as long as p is less than the selling price, which implies that s3(p) overestimates
the signal of an insider but gets more close to s3 as the price increases.

The allocation resulting from this equilibrium strategy is efficient. Suppose that the
equilibrium strategy and signal realization prescribe that after bidder 3 have first dropped
out, bidder 1 outlasts bidders 2 to become a winner, which implies s1 > s2 because of the
symmetry of their equilibrium strategies. Since whoever holds a higher signal has a higher
valuation, v1(s) > v2(s). Efficiency also requires that v1(s) > v3(s). The fact that bidder 1
becomes a winner as 2 drops out at p2 implies that s2(p2) = s2 and s1(p2) < s1, which, in
turn, implies that s3(p2) > s3 since

v3(s1(p2), s2(p2), s3(p2)) = p3 = v3(s1, s2, s3).

Also,
v1(s1(p2), s2, s3(p2)) = p2 > p3 = v3(s1(p2), s2, s3(p2)).

Thus, this inequality together with s1(p2) < s1 and s3(p2) > s3 implies v1(s) > v3(s) by
the single crossing property. Note that the above comparison between the valuations of an
outsider and an insider is made possible by the break-even condition that includes the third
equation of (9), the equation that an insider has dropped at his true valuation.

In Table 1, I report what will be the outcomes if each bidder follows the above equilibrium
strategy for every realized signal profile. Because of the symmetry between bidder 1 and 2,
I omit the cases in which bidder 2 is a winner. In all cases, a bidder with the highest
valuation obtains the object so that the allocation is efficient. It is interesting to see that
orders of bidders’ drop-outs and their valuations do not need to coincide with each other.
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This, however, does not cause any inefficiency. In case (iii), bidder 2 has a higher valuation
than bidder 3 even though the former drops out before the latter. As for the selling price,
which is the second drop-out price, the ex-post selling price is strictly higher with 3 being an
insider than with no insider, unless 3 is a winner, in which case it remains the same. In
case (ii), for instance, the selling price with no insider is (a + 1)s2 + s3, which is smaller
than (a+1)s2 + 1

a(p3−2s2) since 1
a(p3−2s2)−s3 = 1

a(s1−s2) > 0, using p3 = as3 +s1 +s2.

I will now investigate the efficiency of the equilibrium allocation in three cases.19 First,
the efficiency between insiders, which means that an insider winner has the highest valuation
among insiders, is obvious from their truthful bidding strategy. Next, only one insider i and
one outsider j remain, the object must go to whomever has a higher valuation. However,
two distortions are possible: (1) pj < vi(s) < vj(s) that is, outsider i who has a higher
valuation drops out before insider j; (2) vj(s) < vi(s) < pj that is, outsider j who has a
lower valuation plans to drop out later than insider i. However, (1) cannot happen in the
ex-post equilibrium, otherwise j could profitably deviate to outlast i to win and pay vi(s),
which is lower than j’s valuation. Similarly, (2) cannot happen in the ex-post equilibrium.
While this equilibrium argument could easily show that neither distortion arises, it is worth
exploring what it implies about the outsider’s strategy. Specifically, it requires that if
vi(s) = vj(s), then pj = vj(s), that is, when the two bidders have the same valuation, the
outsider must drop out exactly at his valuation.20 This is remarkable considering that the
outsider cannot make the precise inference about some set of signals (or inactive insiders’
signals) and may thus have much uncertainty about his valuation. An outsider can overcome
this problem to avoid underbidding or overbidding his valuation by making the appropriate
use of the information conveyed by insiders’ drop-out prices, as reflected in the break-even
equation.

Lastly, it is necessary to demonstrate that when two outsiders remain, a winner is the
one who has a higher valuation. This easily holds for the symmetric and linear examples
above. However, this may not be the case for general valuations. The main reason is that
insiders’ signals are not fully revealed even at the end of the auction. To see how this
could prevent efficiency, take the example in which bidder 3 is the only insider among three
bidders with possible non-linear and asymmetric valuations. Consider the case where bidder
3 first drops out at p3 and bidder 1 becomes the winner when bidder 2 drops out at p2.
Then, the break-even condition at p2 is

19Although the cases I present do not exhaust all possibilities, one can easily extend the argument to take

account of other cases as in the proof of Theorem 3.
20Otherwise, a nearby signal profile for which (1) or (2) happens can easily be found.
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vk(s1(p2), s2, s3(p2)) =

{
p2 for k = 1 or 2
p3 for k = 3,

(10)

since s2(p2) = s2. Because s1 > s1(p2) from the fact that bidder 1 is the winner, the single
crossing condition combined with the above equation implies

v1(s1, s2, s3(p2)) > v2(s1, s2, s3(p2)).

This inequality, however, does not ensure efficiency since s3(p2) is not equal to bidder 3’s
true signal s3. Indeed, replacing s3(p2) by s3 might reverse the above inequality so that it
is more efficient to award the object to bidder 2 than 1. To avoid this kind of inefficiency,
the following condition on the valuation functions is necessary.

Condition SCIC (Single Crossing on Indifference Curves) Consider any signal profiles s

and s′ with s′i > si for i ∈ O and s′j = sj for all other j ∈ O, satisfying

vk(s′) = vk(s) for all k ∈ I.

Then,
vi(s) = vj(s) implies vi(s′) > vj(s′).

SCIC states that raising an outsider’s signal along insiders’ indifference curves makes his
valuation increase faster than other outsiders’ valuations. The above example can be used
to show how this condition guarantees the efficiency of the equilibrium allocation. Recall
that bidder 3 drops out at his valuation, so equation (10) implies

v3(s1(p2), s2, s3(p2)) = p3 = v3(s1, s2, s3).

Thus, both signal profiles (s1(p2), s2, s3(p2)) and (s1, s2, s3) are on the same indifference
curve of bidder 3. Then, letting i = 1 and j = 2 in the above definition of SCIC leads to

v1(s1, s2, s3) > v2(s1, s2, s3)

since
v1(s1(p2), s2, s3(p2)) = p2 = v2(s1(p2), s2, s3(p2))

and s1 > s1(p2). Figure 1 gives further insight about SCIC requirements. Note that the
signal of bidder 2 is fixed at its true level. By the single crossing property, the indifference



16

-

6

v2(·,s2,·)=p2

v3(·,s2,·)=p3

v1(·,s2,·)=p2
s1

s3

s1

s3

s1(p2)

s3(p2)

(i) SCIC holds : v1(s) > v2(s)

-

6

v3(·,s2,·)=p3

v1(·,s2,·)=p2

v2(·,s2,·)=p2
s1

s3

s1

s3

s1(p2)

s3(p2)

(ii) SCIC might fail : v1(s) ≷ v2(s)

Figure 1: Single Crossing on Indifference Curves

curve of bidder 1 crosses that of bidder 3 from above as s1 increases. In (i), bidder 1’s
valuation increases as his signal rises from s1(p2) to s1 along 3’s indifference curve while
bidder 2’s valuation decreases. More importantly, 1’s valuation grows faster than 2’s valu-
ation as 1’s signal increases along 3’s indifference curve. As seen in the figure, this feature
is reinterpreted as

MRS1
1 3 :=

∂v1

∂s1

/
∂v1

∂s3
>

∂v2

∂s1

/
∂v2

∂s3
=: MRS2

1 3. (11)

This inequality is reversed in (ii) of Figure 1 so that 2’s valuation might be higher than
1’s valuation at s. One can ask when inequality (11) does hold. Given that ∂v1

∂s1
> ∂v2

∂s1
by

the single crossing condition, (11) requires that ∂v1
∂s3

and ∂v2
∂s3

, the marginal effects of a third
party’s signal on two other bidders’ valuations, should not be so different as to overturn
the single crossing property. This was true for the symmetric linear valuation in Example
2 since the signal of a third party (bidder 3) has the same marginal affect on two other
bidders’ valuations. In Section 6, I will provide a class of valuation functions which fit this
observation.

The following theorem generalizes the above argument to establish the efficiency of the
ex-post equilibrium obtained in Theorem 2.

Theorem 3 Suppose that SCIC holds. Then, the ex-post equilibrium of Theorem 2 leads
to efficient allocation.

Proof. See Appendix A.
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When no insider exists, the single crossing condition was enough to guarantee the ef-
ficiency of the monotone equilibrium bidding strategy. The presence of insiders and their
unrevealed signals requires strengthening the single crossing condition to SCIC. Proposition
2, Theorem 1, and Theorem 3 show how a dynamic auction differs from a static (sealed-bid)
auction in terms of allocative efficiency. When the bidders are allowed to be heterogeneous
in their knowledge about the valuations, a sealed-bid auction like a first-price or second-
price auction fails to achieve efficient allocation even with symmetric valuations. On the
other hand, the English auction can do so with some asymmetry on the valuations. The
basic difference is the capability of the English auction to allow for heterogeneous bidders’
bidding strategies to be coordinated by providing the less-informed bidders with the extra
information during the bidding stage.

Now, I provide a sufficient condition for the valuation functions to satisfy both EMS and
SCIC. Krishna (2001) suggested a condition, called average crossing, under which increasing
break-even signals exist when there is no insider. Define the average valuation as

v(s) :=
1
n

∑
k

vk(s). (12)

The average crossing condition is the single crossing condition between the average valuation
and one bidder’s valuation with regard to another bidder’s signal: for all i, j ∈ N and i 6= j,

∂v(s)
∂si

>
∂vj(s)

∂si
.

However, the average crossing condition is not sufficient to guarantee both EMS and SCIC
when there are insiders, as shown in the following example.

Example 3 Suppose that there are three bidders each of whom has the valuation vi(s) =∑3
j=1 aijsj. Let bidder 3 be the only insider. (12) requires that∑

i aij

3
> akj for k 6= j. (13)

However, it can be easily checked that EMS and SCIC are satisfied only when

a11 − a21 >
a31

a33
(a13 − a23) and

a32

a33
(a13 − a23) > a12 − a22. (14)

Clearly, (14) is not implied by (13).

In fact, (14) can rewritten as

∂v

∂sj

∣∣∣∣
v3(s)=v3

>
∂vk

∂sj

∣∣∣∣
v3(s)=v3

for k 6= j and k, j 6= 3
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That is, the average crossing needs to hold on the indifference curve of insider bidder 3.
Therefore, I introduce the following condition to strengthen the average crossing condition
proposed by Krishna (2001).

Condition ACIC (Average Crossing on Indifference Curves) For any B ⊂ I, consider two
arbitrary signal profiles s and s′ with s′i > si for some i ∈ N\B and s′j = sj for all other
j ∈ N\B, satisfying

vk(s′) = vk(s) for k ∈ B.

Then, for any j 6= i,

v(s′)− v(s) > max{vj(s′)− vj(s), 0}. (15)

While holding constant the valuations of any given set B of insiders, raising the signal of a
bidder outside of B makes the average value grow faster than the other bidders’ valuations.
Clearly, ACIC implies the average crossing condition, which is equivalent to requiring (15)
with B = ∅. By investigating (14) of the above example, insights are gained as to the
restrictions ACIC imposes on the valuation functions: (14) is likely to hold when (a11−a21)
and (a22 − a12) are relatively large, compared to |a13 − a23|. So, ACIC requires that the
effects of a third party’s signal (s3) on two other bidders’ valuations (v1 and v2) are not too
different relative to the magnitude of the single crossing property.

It is easy to see that ACIC implies SCIC. The following lemma shows that ACIC also
implies EMS.

Lemma 1 Suppose that ACIC is satisfied. Then, EMS holds.

Proof. See Appendix C.

So, the following corollary results.

Corollary 1 If the valuation functions satisfy ACIC, then the English auction has an ex-
post equilibrium which leads to efficient allocation.

According to Jehiel and Moldovanu (2001), when signals are multidimensional, an efficient
allocation is not implementable in general. In my model, the insiders’ information possesses
the multidimensional property, but the inefficiency result of Jehiel and Moldovanu (2001)
is not applicable. In their model, bidders are assumed to observe the disjoint pieces of
multidimensional information. In my model, however, insiders’ information overlaps with
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that of outsiders, so the dimensionality assumption of Jehiel and Moldovanu (2001) does
not hold.21

5 Revenue Implication in English Auctions

The linkage principle of Milgrom and Weber (1982) states that providing bidders with more
information that is affiliated with that of the winning bidder increases revenues. In a similar
spirit, I ask whether the English auction generates a higher revenue if more bidders know
their valuations. Specifically, consider two English auctions, E and E′, which only differ by a
bidder who is an outsider in E but an insider in E′. I show that the ex-post selling price is at
least as high in E′ as in E. Suppose that a shift from E to E′ occurs. While this operation is
similar in spirit to Milgrom and Weber’s in that the shift increases the information available
to the bidders, an important difference exists. Unlike Milgrom and Weber’s, the increased
information is not public since only the outsider who switches to an insider becomes better
informed of his valuation.22 For this reason, there are two facts to check out: (1) how
the bidding strategy of the switched bidder changes and (2) how it affects other outsiders’
bidding strategies. To establish these two facts requires a completely different argument
from Milgrom and Weber’s because of the asymmetry in bidding strategies of two types.
Milgrom and Weber’s result is rather of a statistical nature since its derivation heavily
depends on the assumption of affiliation among signals. My result does not rely on any
statistical assumption and holds even when signals are independent. Also, Milgrom and
Weber’s result only address ex-ante revenue—revealing a public signal may not improve
revenue ex-post, while the revenue increase holds ex-post in my case. My result is quite
general and makes no assumption about how many bidders are insiders or outsiders initially.

To obtain the desired result, I first assume that efficient ex-post equilibria as obtained
in the previous section, exist in both E and E′. This ensures that the same bidder wins
in E and E′. I further require that higher signals of other bidders, in some sense, need to
be ‘good news’ to a given bidder. To explain it, return to the previous example. Suppose
that in E, bidder 3 is the only insider and, in E′, 2 and 3 are insiders while 1 is still an
outsider. Suppose also that with a given signal profile s, 1 is the winner and pays 2’s drop-
out price in both E and E′. Hence, the selling prices are v2(s1(p2), s2, s3(p2)) in E and
v2(s) in E′. Given this situation, Figure 2 shows two cases consistent with SCIC in which

21For instance, in Case 2 of Section 2, insiders also know outsiders’ signal profile sO.
22In this sense, the enhanced information of the bidder switching from an outsider to an insider may be

viewed as the result of the information gathering activity by the corresponding bidder rather than that of

the public announcement by the seller.
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(i) GNIC fails : v2(s1(p2), s2, s3(p2)) > v2(s)
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(ii) GNIC holds : v2(s1(p2), s2, s3(p2)) < v2(s)

Figure 2: Signals as Good News on Indifference Curves

the revenue might or might not be increasing. Note that (i) of Figure 2 reproduces (i) of
Figure 1. In case (i), it is bad news for bidder 2 to increase 1’s signal along 3’s indifference
curve since v2(s1(p2), s2, s3(p2)) > v2(s) with (s1(p2), s2, s3(p2)) and s being on the same
indifference curve of bidder 3 and s1 being greater than s1(p2). So, bidder 2 drops out
above his valuation in E and at his valuation in E′. Hence, bidder 2’s switch to an insider
hurts the seller. However, once case (i) is ruled out in Figure 2, it is possible to show that
the ex-post revenue always increases with an extra insider. For instance, if the indifference
curves are positioned as in (ii), then v2(s1(p2), s2, s3(p2)) < v2(s) so the revenue increases.
Here, it is good news for both bidder 1 and 2 to increase 1’s signal along 3’s indifference
curve. This observation is generalized in the following condition.

Condition GNIC (Signals as Good News on Indifference Curves) For any set B ⊂ N ,
suppose two arbitrary signal profiles s and s′ have s′i > si for any given i ∈ N\B, s′j = sj

for all other j ∈ N\B, and satisfy

vk(s′) = vk(s) for all k ∈ B.

Then, for any j ∈ N\B,

vj(s′)− vj(s) ≥ 0. (16)

Also, (16) becomes strict with j = i.

This states that a higher signal of one bidder is better news to the bidders whose valuations
are not fixed, when the valuations of the other bidders are held fixed. Of course, to increase
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one signal while holding some bidders’ valuations fixed, causes some other signal(s) to
decrease. For instance, in the above example, to increase bidder 1’s signal and hold bidder
3’s valuation and bidder 2’s signal fixed will result in a decrease in bidder 3’s signal, which
would still increase bidder 2’s valuation according to GNIC. This is in part due to the single
crossing condition, which requires v3 to decrease faster than v2 in response to a decrease in
s3. So, if a decrease in s3 offsets an increase in s1 and keeps v3 unchanged, then the same
change would be likely to increase v2. However, the single crossing alone does not warrant
the above claim, which, in fact, would hardly hold if v3 responds to the change in s1 much
more sensitively than v2 does. For instance, in Example 3, for an increase in s1 along 3’s
indifference curve to raise v2, requires23

a21 −
a23

a33
a31 ≥ 0. (17)

This would not hold if a31
a21

(the difference in the marginal effects of bidder 1’s signal on two
other bidders’ valuations) is too large relative to a33

a23
(i.e. the degree of the single crossing).

This is similar to the observation that was needed for ACIC to be satisfied. Note that (17)
holds for the symmetric linear valuation of Example 2.

Now, let P (s) and P ′(s) denote the selling prices in, respectively, E and E′ with s being
the realized signal profile. Then, the following theorem results.

Theorem 4 Suppose that efficient equilibria exist in both E and E′ as described in Theorem
3. Suppose also that GNIC is satisfied. Then,

P (s) ≤ P ′(s) for all s.

Proof. See Appendix B.

The result follows from two facts, for which GNIC plays a crucial role. First, each outsider
drops out before the price reaches his valuation. Thus, bidder i drops out at a higher price
in E′ than in E. Second, i’s higher drop-out price causes other active outsiders to also
drop out at higher prices in E′ than in E. At an intuitive level, this is mainly due to the
overestimation of some signals. To make the point clear, consider the case in which E only
consists of outsiders. Recall that the break-even signals of active outsiders are increasing
but always below their true levels while inactive outsiders’ signals are correctly inferred.
Thus, every signal is (at least weakly) underestimated in E. In E′, however, if every signal
were underestimated, then insider i’s drop-out price, which is set equal to his valuation

23Note that in view of the definition of GNIC, this corresponds to the case B = {3}, i = 1 and j = 2.

There are similar requirements in the case B = {1} or {2}.
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calculated with those underestimated signals, would be less than his true valuation, thereby
contradicting the insider’s bidding strategy. That is, the underestimation of some signals
requires the overestimation of some other signals. This can be seen in the three bidder
example, where bidder 1 is a winner and pays bidder 2’s drop-out price after bidder 3, the
only insider, has first dropped out. The break-even equation at p2 involves

v3(s1(p2), s2, s3(p2)) = p3 = v3(s).

This equality implies that since bidder 1 being a winner implies s1 > s1(p2), s3 < s3(p2).24

The underestimation of signals results from outsiders’ attempting to avoid falling prey to
the winner’s curse by assuming as if the currently unknown signals are just high enough
to avoid a loss at the current price. Thus, the detrimental effect of the winner’s curse is
alleviated by the presence of insiders. Therefore, having an extra insider is beneficial to the
seller’s revenue.

This result yields yet another implication of toeholds in takeover bidding. Bulow, Huang,
and Klemperer (1999) show that the toeholds make a bidder bid more aggressively, thereby
worsening the winner’s curse for non-toeholders and making them bid less aggressively,
which, in turn, makes the toeholder more aggressive, and so on. In fact, my model presents
another reason for toeholders’ aggressiveness. Toeholders are insiders with no uncertainty
about their valuations, and thus bid aggressively or bid their true valuations since they are
free from the winner’s curse. According to my model, however, insiders’ aggressive bidding
also makes outsiders, or non-toeholders, aggressive, whereas Bulow, Huang, and Klemperer
(1999) predict that non-toeholders will respond with less aggressive bidding.25

6 English Auctions with Private and Common Values

In this section, I provide a class of valuation functions with which all the previous assump-
tions hold. Suppose that bidder i’s valuation is given by

vi(s) = hi(si) + g(s) with h′i(si) > 0 and
∂g

∂sk
≥ 0 for all k. (18)

24It can be easily shown in case of symmetric valuation that this overestimation leads to the revenue

increase. Consider auctions E and E′ in which bidder 3 switches while other bidders remain outsiders.

Suppose that bidder 1 is a winner to pay bidder 2’s drop-out prices in both E and E′. By the symmetry,

when 2 drops out, the break-even signals of bidder 1 and 2 are the same, equal to s2 in both auctions. Bidder

3’s signal has already been revealed in E whereas it is overestimated at s′2(> s2) in E′ as seen above. Thus,

the selling price in E′, which is v2(s2, s2, s
′
3), is higher than that in E, which is v2(s2, s2, s3).

25Note that without explicitly considering the toeholds as a part of the model, the analysis of this paper

might not be directly applicable to the situation of Bulow, Huang, and Klemperer (1999).
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Bidders’ valuations are (additively) separable into two components, a private value hi(si)
and a common value g(s).26 Now, an insider can be viewed as the bidder who is informed
of the common value in addition to his private value, while an outsider is not.

Using a similar method to Example 1, the inefficiency of the second-price auction can
easily be established. On the other hand, this model turns out to satisfy ACIC, yielding
an efficient allocation for the English auction. I first observe that the equilibrium bidding
strategy characterized in Section 4 has an interesting implication on the bidders’ drop-out
order when the valuation functions satisfy (18). And it is partly related to the efficiency of
the resulting allocation. To see it, begin by verifying the following: For all i, j and k 6= i or
j,

∂vi

∂sk
(s) =

∂vj

∂sk
(s) =

∂g

∂sk
(s) for every s. (19)

Thus, one bidder’s signal has the same marginal effect on the other two bidders’ valuations.
It then follows that the ranking of any two bidders’ valuations be independent of the other
bidders’ signals.

Lemma 2 Let two signal profiles s and s′ be such that si = s′i and sj = s′j. Then, vi(s) >

vj(s) if and only if vi(s′) > vj(s′).

Proof. See Appendix C.

This results in outsiders’ dropping out in the order of their valuations, which needs not be
true for all the valuation functions satisfying ACIC.

Proposition 3 Given the equilibrium strategy described in Theorem 2, i drops out before
j if and only if vi(s) < vj(s) for any outsiders i and j, and signal profile s.

Proof. See Appendix C.

Note that this result does not yield complete information about the order of drop-outs, for
an outsider might drop out earlier (later) than does an insider who has a lower (higher)
valuation than him, as shown in Example 2. Despite this possibility, an efficient allocation
can still be achieved.

The efficiency is established by showing that ACIC is satisfied in this model. Recall from
Example 3 that ACIC is likely to be satisfied if the marginal effects of a third party’s signal

26There are some studies which adopt this valuation function in the standard information setup. For

instance, see Wilson (1998) for a theoretical study and Hong and Shum (2002) for an empirical one.
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on other bidders’ valuations are not too different. Indeed, (19) meets this requirement in
its extreme sense. The following lemma shows that both ACIC and GNIC are satisfied by
the valuations in (18) since they satisfy (19).

Lemma 3 The valuation functions for which (19) holds, satisfy ACIC. So do the valuation
functions in (18). Also, the valuation functions in (18) satisfy GNIC.

Proof. See Appendix C.

Hence, Corollary 1 and Theorem 4 may be used to conclude that the efficiency and revenue
results in Section 4 and 5 apply to the current model.

7 Concluding Remarks

There have been previous attempts to formalize what it means for a bidder to be better
informed.27 This paper takes a simple approach by assuming that under the interdependent
valuation setup, a bidder either fully knows his valuation or knows only a one-dimensional
signal. This asymmetry has different effects on the performance of standard auctions in
terms of their efficiency. I find that an asymmetry in bidding strategies resulting from more
or less refined information about one’s valuation, prevents sealed-bid auctions from achieving
efficiency. By contrast, in the English auction, the information provided by drop-out prices
enables poorly-informed bidders to gradually adjust their bidding strategies toward the
efficient allocation. I also find that the presence of insiders has a revenue-enhancing effect
in English auctions. One caveat is that introducing asymmetry requires a stronger sufficient
condition to ensure the existence of an efficient equilibrium. Although this stronger sufficient
condition might restrict the scope of applying our result, I find that the results hold where
bidders’ valuations consist of private and common value components.

An insider can be interpreted as a bidder who has become better-informed of his valu-
ation via an information acquisition activity. Thus, one must ask if it is worthwhile for the
bidder to acquire the information, given the cost it might entail. A rigorous analysis requires
a characterization of equilibria before and after the acquisition. In equilibria characterized
for the English auction in Section 4, a bidder who has switched to an insider, only changes
the course of the auction when he drops out of the auction without being a winner. More
specifically, by becoming an insider, a bidder only increases the price paid by the other

27For example, Persico (2000) and Parreiras (2002) adopt the statistical notion of ‘accurateness’ to define

the informativeness of signals.
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bidders without benefiting himself.28 Thus, in view of what will happen in the subsequent
auction stage, the information acquisition is not worth its cost. To conclude, while there
is a beneficial effect involved in having more insiders, the English auction cannot provide
enough incentive to induce bidders to become insiders. In this sense, sealed-bid auctions
might be better at facilitating information acquisition.29 Although sealed-bid auctions lack
the efficiency property as seen in Proposition 2 and Theorem 1, some beneficial effect may
be expected in terms of revenues. However, I have yet to characterize equilibria for these
types of auctions.

Finally, I recognize the possibility that my revenue result depends crucially on the se-
lection of equilibrium in the case multiple equilibria occur. This problem may not be
simply ignored, given the fact that English auctions are susceptible to equilibrium multi-
plicity. Under the standard information setup with symmetric and interdependent values,
Bikhchandani, Haile, and Riley (2002) observe that a continuum of symmetric separating
equilibria exist and yield the same (ex-post) revenue for the seller. In fact, among these
equilibria is the one employed in my equilibrium construction, given that there is no insider.
Therefore, when the no insider case is compared to the one insider case, at least one equi-
librium exists in the latter case which yields a higher revenue than all symmetric separating
equilibria in the former case. The problem of equilibrium multiplicity (or uniqueness) must
be explored in my alternative information setup before more can be said about the revenue
result.

28This easily derives from the construction of the equilibrium strategy.
29Using the concept of accurate signals, Persico (2000) shows that the first-price auction induces bidders

to acquire more accurate signals than the second-price auction.
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Appendix A : Proofs of Theorem 2 and 3

Throughout the proof, we let O = {1, 2, · · · , l} and I = {l + 1, l + 2, · · · , n}, without loss of
generality. To simplify notations, pN\A, as an argument of functions such as sA(p, pN\A),
will be dropped where there is no confusion. I say that two systems of equations are
equivalent when they have the same form. To ease the reference, rewrite (8):

vk(sO\A, sA(p), sI\A(p)) =

{
p for k ∈ A

pk for k ∈ I\A
(A.1)

Proof of Theorem 2. I only need to establish the optimality of the equilibrium
strategy of an outsider, say, bidder l. Begin with the case in which following the equilibrium
strategy, bidder l is supposed to win the object. A deviation in this situation means that l

drops out at some price p∗ and loses. This deviation can only be profitable if it enables l to
avoid a loss resulting from winning at p∗. In order for l to win at p∗, all other active bidders
need to drop out at p∗. Letting A be the set of active bidders just before the price reaches
p∗, apply the equations (A.1) to obtain sA(p) and sI\A(p). Since other active outsiders
than l drop out at p∗,

sk(p∗) = sk for k ∈ O ∩A and k 6= l. (A.2)

Also, since l is supposed to be active beyond p∗,

sl(p∗) < sl. (A.3)

Now, consider the solution (ŝl(p), ŝI(p)) of equations

vk(sO\l, ŝl(p), ŝI(p)) =


p for k = l

p∗ for k ∈ I ∩A

pk for k ∈ I\A.

(A.4)

Due to (A.2), (A.1) and (A.4) are equivalent if p = p∗, so ŝl(p∗) = sl(p∗). The fact that
insiders drop out at their valuations implies ŝl(vl(s)) = sl. Therefore, because of (A.3),

ŝl(vl(s)) = sl > sl(p∗) = ŝl(p∗),

which implies vl(s) > p∗ since ŝl(p) is increasing. Thus, bidder l doesn’t suffer a loss by
winning at p∗.

Now, I consider the case in which l is supposed not to win the object. The only profitable
deviation of l is to outstay other active bidders and win the object. Assume w.l.o.g. that
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once the set of active bidders becomes {i, i + 1, · · · , j} with i ≤ l − 1 or j ≥ l + 1, l’s
equilibrium strategy tells him to drop out at the current price p∗ before any other bidder
does so. It needs to be shown that l suffers a loss from deviating to be a winner. To ease
the notational burden, let the outsiders drop out in the increasing order i, i + 1, · · · , l − 1
and the insiders in the decreasing order j, j−1, · · · , l+1, and write si:j to denote the signal
profile of bidders from i to j, and similarly for other profiles. When the current price p ≥ p∗,
the break-even signal profile of active outsiders is the solution of

vk(s1:i−1, si:j(p), sj+1:n(p)) =

{
p for k = i, · · · , j

pk for k ≥ j + 1.
(A.5)

The equilibrium strategy according to which l is supposed to drop out at p∗, means

si:j
l (p) ≥ si:j

l (p∗) = sl for p ≥ p∗. (A.6)

After an outsider i dropped out at pi and his type was revealed to be si, the break-even
signal profile of the active outsiders for p ≥ pi is the solution of

vk(s1:i, si+1:j(p), sj+1:n(p)) =

{
p for k = i + 1, · · · , j

pk for k ≥ j + 1.
(A.7)

Since si:j
i (pi) = si, (A.5) and (A.7) are equivalent for k ≥ i + 1 if p = pi and, hence,

si:j
k (pi) = si+1:j

k (pi) for k = i + 1, · · · , l. (A.8)

After an insider j dropped out at pj , the break-even signal profile for p ≥ pj is the solution
of

vk(s1:i−1, si:j−1(p), sj:n(p)) =

{
p for k = i, · · · , j − 1
pk for k ≥ j.

(A.9)

If p = pj , then (A.5) and (A.9) are equivalent so that

si:j
k (pj) = si:j−1

k (pj) for k = i, · · · , l. (A.10)

Therefore, given (A.6) and, (A.8) and (A.10) with k = l,

si+1:j
l (pi+1) ≥ si:j

l (pi) ≥ si:j
l (p∗) = sl

si:j−1
l (pj−1) ≥ si:j

l (pj) ≥ si:j
l (p∗) = sl

because pi+1 ≥ pi and pj−1 ≥ pj , and the break-even signals are increasing with the price.
Continuing this way until bidder l and only one other bidder remain, yields

either sl ≤ sl−1:l
l (pl−1) or sl ≤ sl:l+1

l (pl+1), (A.11)
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according to whether l’s last competitor is l − 1 or l + 1. I first deal with the case l − 1 is
the last competitor so the former inequality is true, while the other case can be analyzed
by a parallel argument. Consider the solution of

vk(s1:l−1, sl(p), sl+1:n(p)) =

{
p for k = l

pk for k ≥ l + 1.
(A.12)

Because pk = vk(s) for k ≥ l+1, we must have that when p = vl(s) in (A.12), sl(vl(s)) = sl.
The fact that sl−1 = sl−1:l

l−1 (pl−1) implies that sl(pl−1) = sl−1:l
l (pl−1). Hence, using the first

inequality of (A.11) yields

sl(vl(s)) = sl ≤ sl−1:l
l (pl−1) = sl(pl−1),

which implies vl(s) ≤ pl−1 because sl(p) increases with p. This inequality can be made
strict if pl−1 > p∗ because, then, at least one of the inequalities in the above argument has
to be strict. Thus, bidder l suffers a loss, paying more than his valuation.

In order to have the given strategy well-defined, the following is necessary: for any
i ∈ O ∩A,

s−1
i (si,pN\A) > max

k∈N\A
pk.

Otherwise, the outsider i with si will drop out immediately after the price reaches maxk∈N\A pk,
making it impossible for others to infer his type. Let p′ = maxk∈N\A pk. Let B de-
note the set of active bidder before the price reaches p′. Then, as in (A.8) or (A.10),
si(p′,pN\A) = si(p′,pN\B). Because i is active at p, it must be that si(p′,pN\B) < si so
si(p′,pN\A) < si. Q.E.D.

Proof of Theorem 3. Assume wlog that outsiders drop out in the order 1, · · · , l, and
n is the insider who has the highest valuation among insiders. I begin with the case in
which l is the winner, which means that l remains active until the price gets past vn(s). He
would suffer a loss if vl(s) < vn(s), and, thus, vl(s) ≥ vn(s). Now, it suffices to show that
l has the highest valuation among outsiders. I first show that vl−1(s) ≤ vl(s). Suppose to
the contrary that

vl−1(s) > vl(s) ≥ vn(s). (A.13)

Consider a deviation by l − 1 that causes him to survive all the other bidders and win the
object. Obviously, l − 1’s last competitor is either l or n. It cannot be n because if so, the
deviation would be profitable since l − 1 could win the object at the price vn, which, from
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(A.13), is less than his valuation. So, l − 1’s last competitor must be l. Assuming that l

drops out at some p, the corresponding break-even condition is

vk(sO\l−1, sl−1(p), sI(p)) =

{
p for k = l, l − 1
pk for k ∈ I

(A.14)

since sl(p) = sl. Hence, from the fact that insiders drop out at their valuations, two signal
profiles s and (sO\l−1, sl−1(p), sI(p)) lie on the same indifference curves of all insiders.
Since the fact that l − 1 has deviated implies that sl−1(p) > sl−1, to apply SCIC results
in vl(s) ≥ vl−1(s) because p = vl(sO\l−1, sl−1(p), sI(p)) = vl−1(sO\l−1, sl−1(p), sI(p)). This
contradicts (A.13) and leads to the conclusion that vl(s) ≥ vl−1(s). For the induction
argument, suppose that

vl(s) ≥ max
j+1≤k≤l−1

vk(s).

It is to be proved that vl(s) ≥ vj(s). Suppose to the contrary that

vj(s) > vl(s) ≥ max
j+1≤k≤l−1

vk(s). (A.15)

Consider the deviation that causes j to survive all the other bidders and win. Then, the
last competitor of j must be one of outsiders, j + 1, j + 2 · · · , l. Let him be the bidder h

with j+1 ≤ h ≤ l. A parallel argument to the above one can be used to yield vh(s) ≥ vj(s),
contradicting (A.15).

Now, consider the case in which n is the winner. If bidder l had a higher valuation than
n, then he could have won the object and enjoyed some positive surplus by deviating to
defeat n. Hence, it must be that vl(s) ≤ vn(s). Turning to bidder l − 1, if it were the case
that vl−1(s) > vn, then in case he deviates to win, his last competitor would have to be
outsider l, as argued above. Again, using the above argument yields the contradiction that
vl−1(s) ≤ vl(s) < vn. Thus, vl−1(s) ≤ vn(s). The same inductive reasoning as above can
be used to conclude that vk(s) ≤ vn(s) for each k ∈ O. Q.E.D.

Appendix B : Proof of Theorem 4

As a preparation for establishing Theorem 4, I prove three lammas. The first two lemmas
apply to both E and E′, while the last one focuses on the comparison between E and E′.

The first lemma shows that an outsider does not have an incentive to reenter the auction
at any point after he dropped out, based on the information revealed up to that point.
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Lemma B.1 Consider any outsider j and price p > pj. Then,

vj(sO\A, sA(p), sI\A(p)) ≤ p, (B.1)

where A is the set of active bidders at p.

Proof. Suppose to the contrary that

vj(sO\A, sA(p), sI\A(p)) > p. (B.2)

The break-even condition at p is

vk(sO\A, sA(p), sI\A(p)) =

{
p for k ∈ A

pk for k ∈ I\A
(B.3)

Consider an alternative setup where bidders in O\A are outsiders and their signal profile
is sO\A while the other bidders are insiders and their signal profile is (sA(p), sI\A(p)). In
this setup, j is still an outsider and his valuation is equal to vj(sO\A, sA(p), sI\A(p)). It is
straightforward to see that the same history will unfold up to the price p. So, the bidders in
N\A will drop out at the same prices as in the original setup. Bidders in A are all insiders
and, thus, will be the winners at p, which, from (B.3), is the valuation of those bidders.
However, from (B.2), bidder j has a higher valuation than p so that the allocation would
be inefficient, contradicting Theorem 3. Q.E.D.

Next lemma shows that at any point of the auction, the estimated valuation of an
outsider, based on the information revealed up to that point, does not exceed his true
valuation.

Lemma B.2 For any price p and outsider j,

vj(sO\A, sA(p), sI\A(p)) ≤ vj(s),

where A is the set of active bidders at p. This implies that pj ≤ vj(s).

Proof. When j is active at p, the break-even conditions requires

vj(sO\A, sA(p), sI\A(p)) = p.

Thus, vj(sO\A, sA(p), sI\A(p)) is increasing with p. So, suppose that j is inactive at p.
The signal profile (sO\A, sA(p), sI\A(p)) at p is on the indifference curves of the bid-
ders I\A. Also, sA(p) is increasing with p while the signals of the bidders O\A remain
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the same. Applying GNIC, we get vj(sO\A, sA(p), sI\A(p)) increasing with p. Hence,
vj(sO\A, sA(p), sI\A(p)) is maximized at the selling price. Now, let p denote the selling
price and m the winner. I only analyze the case m is an outsider because the analysis is
similar in the case m is an insider. Then, two signal profiles (sO\m, sm(p), sI(p)) and s are
on the same indifference curves of all insiders. Furthermore, it must be that sm(p) < sm.
Therefore, GNIC can be invoked again to conclude that vj(sO\m, sm(p), sI(p)) ≤ vj(s).

Q.E.D.

Lemma B.2 implies that bidder i drops out at a higher price in E′ than in E.
Now, I prove that the higher drop-out price of bidder i causes other outsiders to stay

active in E′ as long as in E. From now on, for any variable x used in E, x′ denotes its
counterpart in E′. For instance, p′k denotes the drop-out price of bidder k in E′. Assume
wlog that in E, the set of outsiders in E is O = {1, 2, · · · , l} and outsiders drop out in the
order, 1, · · · , l. Note that outsiders in E drop out at the same prices-their valuations-in E

and E′.

Lemma B.3 For any outsider j of E,

p′j ≥ pj . (B.4)

Proof. From Lemma B.2, we know that pi ≤ vi(s) = p′i. Clearly, E and E′ follow the same
history up to the price pi since bidder i does not drop out in both E and E′ until the price
reaches pi. Thus, for an outsider j < i, p′j = pj . If i = l, then the proof is done. So, assume
i < l and consider an outsider j > i.

Suppose by way of contradiction that there is some outsider who violates (B.4). Let j

denote the first outsider to drop out violating (B.4) in E′ so that pi < p′j < pj . Let A and
A′ denote the set of active bidders in E and E′, respectively, when the current price is p′j .
Counting j as an active bidder at p′j in E′, we must have j ∈ A ⊂ A′. Note that i might or
might not be in A′ while i /∈ A. Note also that except for i, the sets A and A′ only differ in
their outsiders, so I\A = I\A′. Write down the break-even conditions at the price p = p′j
in E and E′. In E, it is

vk(sO\A, sA(p′j), sI\A(p′j)) =

{
p′j for k ∈ A

vk(s) for k ∈ I\A,
(B.5)

while, in E′, it is

vk(sO\A′ , s′A′(p′j), s
′
i(p

′
j), s

′
I\A(p′j)) =

{
p′j for k ∈ A′

vk(s) for k ∈ (I ∪ {i})\A′.
(B.6)
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Note that the insiders’ drop-out prices are equal to their valuations.
Let s(p′j) and s′(p′j) denote (sO\A, sA(p′j), sI\A(p′j)) and (sO\A′ , s′A′(p′j), s

′
i(p

′
j), s

′
I\A(p′j)),

respectively. The assumption that j drops out at p′j in E′ while being active in E, implies
that

sj(p′j) < sj = s′j(p
′
j), (B.7)

of which I will obtain the contradiction. In order to do so, I first prove the following claim.

Claim 1 s′i(p
′
j) ≥ si.

Proof. If i ∈ A′, then s′i(p
′
j) > s′i(pi) = si(pi) = si, for s′i(·) is increasing and p′j > pi.

Hence, assume i /∈ A′ and thus p′i = vi(s′(p′j)). Suppose to the contrary that s′i(p
′
j) < si.

Since the bidders in A′\A are all active as outsiders in E′, but not in E, it must be true that
s′A′\A(p′j) � sA′\A and pk < p′j for k ∈ A′\A.30 Observe that s(p′j) and s′(p′j) belong to the
same indifference curves of the bidders I ∪A, and the signals of the bidders (A′\A)∪{i} are
higher with s(p′j) than with s′(p′j) while the signals of the bidders O\A′ remain the same.
GNIC can be applied to yield p′i = vi(s′(p′j)) < vi(s(p′j)). However, Lemma B.2 requires
vi(s) = p′i < vi(s(p′j)) ≤ vi(s), a contradiction.
Claim 1 says that the signal of insider i in E′ is (weakly) overestimated at the price p′j .
Using this, I complete the proof by proving that the break-even signals of active bidders at
p′j in E are (weakly) greater in E than in E′, which contradicts (B.7).

Claim 2 s′A(p′j) ≤ sA(p′j).

Proof. Define a new set of equations from (B.6) by replacing s′i(p
′
j) with si and, then,

dropping the equation for bidder i. Denote the resulting set of equations by M̂ and its
solution by ŝ = (sO\A′ , ŝA′ , si, ŝI\A). Since si ≤ s′i(p

′
j) from Claim 1, it must be true that

ŝA′ ≥ s′A′(p′j). (B.8)

Otherwise, or if ŝk < s′k(p
′
j) for some k ∈ A′, then it can easily be shown using GNIC that

vk(ŝ) < p′j , which cannot be true by the definition of ŝ.31 Also,

ŝk ≥ sk for at least one k ∈ A′\A. (B.9)
30It might be that A′\A = ∅.
31The argument to show this goes as follow. Two signal profiles s′(p′j) and ŝ are on the same indifference

curves of the bidders I ∪ A′ − {k, i}. Also, the signals of i and k decrease from s′i(p
′
j) and s′k(p′j) to si and

ŝk, respectively. Thus, GNIC implies that vk(ŝ) < p′j since vk(s(p′j)) = p′j .
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Otherwise, ŝA′\A � sA′\A holds so that GNIC requires p′j = vk(ŝ) < vk(s(p′j)) for all
k ∈ A′\A since both ŝ and s(p′j) are on the same indifference curves of bidders I ∪ A and
the signals of bidders A′\A are higher with s(p′j) than with ŝ while other signals remain
the same. This, however, contradicts Lemma B.1, which requires vk(s(p′j)) ≤ p′j because
p′j > pk for k ∈ A′\A. Now, pick any outsider k ∈ A′\A for whom ŝk ≥ sk, and modify M̂

by replacing ŝk with sk and dropping the equation for bidder k. Denote the resulting set of
equations by ˆ̂

M and its solution by ˆ̂s = (sO\A′ , ˆ̂sA′\k, sk, si, ˆ̂sI\A). Since sk ≥ ŝk, it must
hold that

ˆ̂sA′\k ≥ ŝA′\k, and ˆ̂sk′ ≥ sk′ for at least one k′ ∈ A′\A− {k}, (B.10)

for the same reason as (B.8) and (B.9) hold. This replacement can be performed one at
a time until the signals of entire bidders in A′\A are replaced by sA′\A their true signals.
During this process, the signals of bidders A keep (weakly) increasing as in (B.8) and (B.10),
and finally become equal to sA(p′j), thus completing the proof.32

Q.E.D.

Finally, I prove Theorem 4, using Lemma B.2 and B.3.
Proof of Theorem 4. Since the equilibria are efficient, E and E′ have the same

winner. Thus, in the case i is a winner in E, he is also a winner in E′. Hence, all bidders
but i will drop out at the same prices in E and E′ so that the selling price does not change.
Suppose alternatively that in E, i is not a winner, but a runner-up, causing the winner to
pay pi. In this case, i is also a runner-up in E′ because i now drops out at his valuation,
which is greater than pi from Lemma B.2, and hence, the bidder who drops out before i in
E, also drops out before i in E′. So, the selling price (weakly) increases from pi to vi(s) as
i becomes an insider. Lastly, suppose that i is neither a winner nor a runner-up in E. We
can then combine Lemma B.2 and B.3 to obtain

P (s) = max
k∈I

{
max
j∈O

{pj}, vk(s)
}
≤ max

k∈I

{
max
j∈O

{p′j}, vk(s)
}

= P ′(s).

Q.E.D.

Appendix C : Other Proofs

Proof of Proposition 2. A few notations are introduced first. Define a function α as in
the proof of Proposition 1, that is α : [0, s2] → [0, 1] satisfies v1(α(s2), s2) = v2(α(s2), s2)),

32After all the replacements, the resulting set of equations becomes (B.5), which is why the signals of A

become equal to sA(p′j), the solution of (B.5).
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where s2 is the highest s2 at which α(s2) is well-defined. It is easy to verify that α(0) = 0,
α(·) is (strictly) increasing with s2, and s2 > 0. For notational convenience, denote vs =
v1(α(s), s) = v2(α(s), s) for s ∈ [0, s2], and v = v1(α(s2), s2). FS2|V1

(·|v) and fS2|V1
(·|v)

denote the marginal distribution of S2 on conditional V1 = v, and its density, respectively.
FS1|S2

and fS1|S2
are similarly defined.

Part 1: Suppose to the contrary that there exists an efficient equilibrium, which requires
that bidder 2 of type s ∈ [0, s2] wins if and only if s1 < α(s). Then, I claim that bidder
2 must bid vs. Any bid b > vs would defeat bidder 1 of such type s1 > α(s) that b >

v1(s1, s) > vs, which causes an inefficiency. Likewise, any bid b < vs would be defeated by
bidder 1 of such type s1 < α(s) that b < v1(s1, s) < vs, which also causes an inefficiency.
Thus, I conclude that bidder 2 of type s wins and pays vs if and only if s1 < α(s). However,

v2(s1, s2) < vs = v2(α(s), s) = v1(α(s), s),

which would yield a loss to bidder 2.

Part 2: The following claim is needed.33

Claim 1 There exists an efficient equilibrium only if

FS2|V1
(s|vs)

fS2|V1
(s|vs)

=
FS1|S2

(α(s)|s)
α′(s)fS1|S2

(α(s)|s)
for all s ∈ [0, s2]. (C.1)

Proof. Let b1 : v ∈ [0, v1] 7→ b1(v) ∈ R+ and b2 : s ∈ [0, 1] 7→ b2(s) ∈ R+ denote the bidding
strategies of bidder 1 and 2, respectively, where v1 = maxs∈[0,1]2 v1(s). Suppose that these
bidding functions lead to the efficient allocation, which means that bidder 1 wins if and
only if α(s1) ≥ s2. It follows that b1 and b2 are strictly increasing and thus differentiable
almost everywhere in [0, v] and [0, s2], respectively. Also, it must be that

b1(vs) = b2(s) for (almost every) s ∈ [0, s2]. (C.2)

In equilibrium, bidder 1 with vs ∈ (0, v) chooses

vs ∈ arg max
v∈[0,v]

(vs − b1(v))FS2|V1
(b−1

2 (b1(v))|vs).

Differentiating the objective function with v and setting v = vs give

−b′1(vs)FS2|V1
(s|vs) + (vs − b1(vs))fS2|V1

(s|vs)
b′1(vs)
b′2(s)

= 0,

33This claim itself almost suffices to yield an inefficiency for the generic distribution and valuation func-

tions. Suppose for instance that (C.1) holds for a given distribution and given valuation functions. If either

the distribution or the valuations are slightly perturbed, then (C.1) will fail.
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since b−1
2 (b1(vs)) = s due to (C.2). Some rearrangement yields

FS2|V1
(s|vs)

fS2|V1
(s|vs)

=
(vs − b1(vs))

b′2(s)
. (C.3)

As for bidder 2 with s ∈ [0, s], he has to choose

s ∈ arg max
s′∈[0,s]

(
E[v2(S1, s) | S1 ≤ α(s′)]− b2(s′)

)
FS1|S2

(α(s′)|s)

=
∫ α(s′)

0
v2(t, s)dFS1|S2

(t|s)− FS1|S2
(α(s′)|s)b2(s′).

Differentiating the objective function with s′ and setting s′ = s yield after some rearrange-
ment

α′(s)fS1|S2
(α(s)|s)(v(α(s), s)− b2(s)) = FS1|S2

(α(s)|s)b′2(s)

or
FS1|S2

(α(s)|s)
α′(s)fS1|S2

(α(s)|s)
=

(vs − b1(vs))
b′2(s)

, (C.4)

since v(α(s), s) = vs and b2(s) = b1(vs) from (C.2). By combining (C.3) and (C.4), (C.1) is
obtained.

Now, it would complete the proof to show that FS2|V1
(s|vs), fS2|V1

(s|vs), fS1|S2
(α(s)|s),

and α′(s) are all bounded away from zero for any s while FS1|S2
(α(s)|s) becomes arbitrarily

small with sufficiently small s, which contradicts (C.1). Start with a few observations. The
first one is that the twice differentiable valuation functions on the compact set and their
positive partial derivatives imply that for some finite K > 1,

1
K

<
∂vj

∂si
(s) < K for all i, j and s. (C.5)

Combined with this, the single crossing condition implies that for some finite L > 1,

1
L

< α′(s) =
∂v2
∂s2

− ∂v1
∂s2

∂v1
∂s1

− ∂v2
∂s1

< L for all s ∈ [0, s2]. (C.6)

From (5), the last observation is that for all (s1, s2) ∈ [0, 1]2 and s ∈ [0, s2],

1
R2

< fS1|S2
(s1|s2), fS2|V1

(s|vs) < R2 (C.7)

So, fS2|V1
(s|vs), fS1|S2

(α(s)|s), and α′(s) are bounded away from zero. Now, we show that
FS2|V1

(s|vs) is also bounded away from zero. Consider an arbitrary s ∈ [0, s2] and define
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A = {s | s2 ≤ s and v(s) = vs} and B = {s | s2 ≥ s and v(s) = vs} Then, with (C.5) and
(C.6), it is not hard to show that for some finite M ,34∫

s∈B
1 < M

∫
s∈A

1. (C.8)

We thus have

FS2|V1
(s|vs) =

∫
A f(s)∫

A f(s) +
∫
B f(s)

=
1

1 +
∫

B f(s)∫
A f(s)

>
1

1 + R2
∫

B 1∫
A 1

>
1

1 + MR2
,

where the first inequality follows from (5) and the second one from (C.8). Therefore,
FS2|V1

(s|vs), fS2|V1
(s|vs), fS1|S2

(α(s)|s), and α′(s) are all bounded away from zero for any
s. That FS1|S2

(α(s)|s) can be made arbitrarily small follows from the facts that for small
s, α(s) is also small, and that the conditional density fS1|S2

is uniformly bounded above by
K2. Q.E.D.

Proof of Theorem 1. I provide the proof when n = 3. The general proof follows the
same line.

Suppose to the contrary that there exists an efficient equilibrium. For a given bidder i,
let’s define

Ei := {s ∈ [0, 1]n | vi(s) ≥ vj(s) for j 6= i}

to be the set of other bidders’ signals for which bidder i is an efficient bidder. Because of
the assumption that in the efficient allocation, insiders obtain the good with some positive
probability less than one, there must be some outsider, say bidder 1, and some insider, say
bidder 2, such that E1 ∩ E2 is 2-dimensional manifold. Now, for a given s1, define

E12(s1) = {s′|s′1 = s1 and s′ ∈ E1 ∩ E2}.

Then, it must be that for a non-zero measure set of s1, E12(s1) has a positive length. Fix
any such s1. Given the efficient allocation and truthful bidding of bidder 2, the bid b1(s1)
of bidder 1 with s1 has to satisfy

max
{s′∈E1|s′1=s1}

v2(s′) ≤ b1(s1) ≤ min
{s′∈E2|s′1=s1}

v2(s′). (C.9)

34Noth that each integral measures the length of the sets A and B. The proof of this inequality follows

from the fact that the slope of α(·) and the slope of the indifference curve v(s) = vs are both bounded away

from zero and bounded above.
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If the first inequality is violated, then the good sometimes does not go to bidder 1 even
though he has the highest valuation. The second inequality is necessary for bidder 2 to
obtain the good when he is an efficient bidder. Equation (C.9) requires v2(s) to be a
constant, say k, for all s ∈ E12(s1). Otherwise, the maximum in LHS of (C.9) would be
greater than the minimum in RHS. So, it must be that v1(s) = v2(s) = k for all s ∈ E12(s1),
which cannot be satisfied by generic valuation functions.

The second part can be derived directly from (C.9), which, by the symmetry, becomes

max
{(s′2,s′3)|s1≥max{s′2,s′3}}

v(s1; s′2, s
′
3) = v(s1; s1, s1)

≤ v(s1; s1, 0) = min
{(s′2,s′3)|s′2≥max{s1,s′3}}

v2(s1, s
′
2, s

′
3),

a contradiction for s1 > 0. Q.E.D.

I borrow a lemma from Krishna (2001) to prove Lemma 1. Say that an m×m matrix
A satisfies the dominant average condition if

1
m

m∑
k=1

akj > aij , for all i 6= j (C.10)

and
m∑

k=1

akj > 0, for all j. (C.11)

Krishna (2001) establishes the following lemma.

Lemma C.0 Suppose A is an m×m matrix that satisfies the dominant average condition.
Then, A is invertible. Also, there exists a unique x � 0 such that

Ax = 1,

where 1 is a column vector of m 1’s.

Before giving the proof of Lemma 1, I introduce some notations. First,

v′
A·B(s) ≡ (v′ij(s))i∈A,j∈B,

where v′ij(s) = ∂vi(s)
∂sj

. Let 0A and 1A denote column vectors of |A| 0’s and 1’s, respectively.
Proof of Lemma 1. The proof is similar to that of Lemma 2 in Krishna (2001). The

main difference comes from the addition of the second set of equations in (8). Start with
the case A = N in which no one has dropped out yet. Differentiating (8) with p yields

v′
N ·N (s′)s′(p) = 1N .
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Therefore, unique increasing solution of (8) exists if and only if there exists unique increasing
solution of the following differential equation :

v′
N ·N (s(p))s′(p) = 1N

s(0) = 0N .

Since valuations functions are twice continuously differentiable, and v′
N ·N is invertible and

satisfies the dominant average condition, Peano’s theorem and Lemma C.0 imply that there
exists a unique increasing solution of the above differential equation for p ≤ mink∈O s−1

k (1).35

Now, suppose that the set of active bidders is A and the unique solution of (8) exists up
to the price p′ = maxk∈N\A pk. I extend the solution to the price p ∈ [p′,mink∈O∩A s−1

j (1)].
Given sO\A has been revealed, let (sA, sI\A) denote the solution of (8) at p′. Differentiate
both sides of (8) with p to get(

v′
A·A(sA(p)) v′

A·I\A(sA(p))

v′
I\A·A(sA(p)) v′

I\A·I\A(sA(p))

)(
s′A(p)

s′I\A(p)

)
=

(
1A

0I\A

)
(C.13)

(sA(p′), sI\A(p′)) = (sA, sI\A),

where sA(p) = (sO\A, sA(p), sI\A(p)). Indeed, a unique solution of (8) exists if and only if
the unique solution (sA(p), sI\A(p)) of this differential equation exists for p ∈ [p′,mink∈O∩A s−1

j (1)],
which can be shown using a parallel argument to the one in the last paragraph. I have yet
to show that sA(p) is increasing. To begin with, dropping the arguments and rearranging,
write the last |I\A| lines of (C.13) as

v′
I\A·I\As′I\A = −v′

I\A·As′A

or
s′I\A = −(v′

I\A·I\A)−1v′
I\A·As′A.

Substitute this into the first |A| lines of (C.13) to obtain after some rearrangement(
v′

A·A − v′
A·I\A(v′

I\A·I\A)−1v′
I\A·A

)
s′A = 1A. (C.14)

Let’s define

V ≡ v′
A·A − v′

A·I\A(v′
I\A·I\A)−1v′

I\A·A. (C.15)

35In fact, this can be true only in the case

min
k∈O

s−1
k (1) ≤ min

k∈I
s−1

k (sk), (C.12)

since otherwise, for p such that s−1
j (sj) < p ≤ mink∈O s−1

k (1) with some j ∈ I, the solution sj(p) has to go

beyond sj , which cannot happen. However, it is easy to verify that (2) guarantees (C.12).
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It is straightforward to see that ACIC implies each column of V must satisfy (C.10) and
(C.11). Therefore, V satisfies the dominant average condition. From Lemma C.0 and
(C.14), we have s′A � 0. Q.E.D.

Proof of Lemma 2. Wlog, let i = 1 and j = 2. Suppose that

v1(s) > v2(s). (C.16)

Consider such a signal profile s′′ that s3
′′ = s3

′ and sj
′′ = sj for j 6= 3. Then,

v1(s′′)− v1(s) =
∫ s3

′

s3

∂v1(t, s−3)
∂s3

dt =
∫ s3

′

s3

∂v2(t, s−3)
∂s3

dt = v2(s′′)− v2(s),

where the second equality follows from (19). Combining this equality with (C.16) yields

v1(s′′) > v2(s′′). (C.17)

Construct another signal vector s′′′ for which s4
′′′ = s4

′ and sj
′′′ = sj

′′ for j 6= 4. A similar
derivation shows that v1(s′′′)−v1(s′′) = v2(s′′′)−v2(s′′). Combining this with (C.17) yields
v1(s′′′) > v2(s′′′). Changing the elements of s one at a time leads to the conclusion that
v1(s′) > v2(s′).

Q.E.D.

Proof of Proposition 3. Let A be the set of active bidders just before i drops out. If
i drops out before j, the break-even condition at pi is

vi(sO\A, si, sA\i(pi), sI\A(pi)) = pi = vj(sO\A, si, sA\i(pi), sI\A(pi)).

Since sj > sj(pi), the single-crossing property implies

(sO\A, si, sj , sA\{i,j}(pi), sI\A(pi)) < vj(sO\A, si, sj , sA\{i,j}(pi), sI\A(pi)),

which is equivalent to vi(s) < vj(s), according to Lemma 2. Q.E.D.

Proof of Lemma 3. I prove this lemma by showing that if vi’s satisfy (19), then the
matrix V in (C.15) satisfies (C.10) and (C.11). Let g′k = ∂g

∂sk
and g′A = (g′k)k∈A, where g′A

is a column vector. DA denotes the diagonal matrix whose diagonal entry is v′kk − g′k for
k ∈ A. Because of (19), any given column of v′

A·A has the identical non-diagonal entries.
Also, any given column of v′

A·B for A ∩ B = ∅ has the identical entries. Thus, for any
A,B ⊂ N ,

v′
A·B =

{
DA + 1A(g′A)t if A = B

1A(g′B)t if A ∩B = ∅,
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where (·)t denotes the transpose of a matrix. Now, rewrite V in (C.14) as

V = DA + 1A(g′A)t − 1A(g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1
1I\A(g′A)t

= DA + 1A(g′A)t − x1A(g′A)t = DA + (1− x)1A(g′A)t, (C.18)

where x = (g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1
1I\A. All the entries in any given column of the

matrix 1A(g′A)t are identical and the diagonal entries of DA are positive. Thus, it is easily
verified that V satisfies (C.10). Since g′A ≥ 0, if x < 1 in (C.18), then all entries of V are
non-negative and the diagonal ones are strictly positive, which will imply that (C.11) holds
and thus both ACIC and GNIC are satisfied. Hence, the proof is completed by showing
x < 1:

x = (g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1
1I\A

= (g′I\A)t

(
D−1

I\A −

(
1

1 + (g′I\A)tD−1
I\A1I\A

)
D−1

I\A1I\A(g′I\A)tD−1
I\A

)
1I\A

= (g′I\A)tD−1
I\A1I\A −

(
(g′I\A)tD−1

I\A1I\A

)2

1 + (g′I\A)tD−1
I\A1I\A

=
(g′I\A)tD−1

I\A1I\A

1 + (g′I\A)tD−1
I\A1I\A

=

∑
k∈I\A g′k/(v′kk − g′k)

1 +
∑

k∈I\A g′k/(v′kk − g′k)
< 1

since g′k ≥ 0 and v′kk > g′k, where the second equality was derived using the formula for an
inverse matrix, (

A + bct
)−1 = A−1 −

(
1

1 + ctA−1b

)
A−1bctA−1,

with A = DI\A, b = 1I\A, and c = g′I\A, and it is routine to verify the last equality.
Q.E.D.
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