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Abstract

We introduce a new class of rules for resolving quasilinear social
choice problems. These rules extend those of Green [7]. We call such
rules multi-utilitarian rules. Each multi-utilitarian rule is associated
with a probability measure over the set of weighted utilitarian rules,
and is derived as the expectation of this probability. These rules are
characterized by the axioms efficiency, translation invariance, mono-
tonicity, continuity, and additivity. By adding recursive invariance,
we obtain a class of asymmetric rules generalizing those Green char-
acterizes. A multi-utilitarian rule satisfying strong monotonicity has
an associated probability measure with full support.
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1 Introduction

Building on the foundational work of Green [6, 7], this paper studies a social
choice model where agents can make transfers among themselves. Imagine
two agents who must decide on some social alternative. There is an infinitely
divisible good, and agents have preferences which are quasilinear over the
social alternative and good. The question is which alternative should be
chosen, and which transfers should be recommended? We take a normative
approach to this problem.
We imagine that randomization over social alternatives is permitted, and

that all agents are expected utility maximizers. Moreover, we assume that
agents are risk-neutral in the infinitely divisible good. Under these assump-
tions, we may uniquely (up to translation) represent each agent’s preference
by a utility function which is additively separable in the infinitely divisible
good, taking the form U (p, x) = u (p) + x.
We do not work with the underlying space of alternatives. Instead, the

primitive of the model is the utility possibility set that agents can achieve
without making transfers. Thus, the theory is “welfarist,” at least in terms
of the social alternatives. Any two scenarios which induce the same utility
possibility set before transfers are identified. This utility possibility set is
referred to as a “problem.” For any given problem, a rule specifies a pair of
utilities for the agents. We assume this pair of utilities is achievable through
transfers.
We discuss properties that rules for solving such problems should satisfy.

Minimally, we require that a rule select efficient utility pairs. However; we
ask that a rule satisfies several other properties. One such requirement is tied
to the underlying utility representation. The utility representation derived
for any given preference relation is almost unique. However, by adding a con-
stant to a given utility representation, we obtain a new utility representation
for a preference which is equally as valid as the first. We will require that a
rule is robust to utility specification. Translation invariance states that the
addition of a constant vector to a problem (equivalent to adding a constant
to each agent’s utility function) should induce an equivalent addition of this
vector to its solution.
Suppose that a problem is altered, so that alternatives are added which

“favor” agent 1, and some alternatives which “favor” agent 2 are removed.
How should the solution respond to such a change? As the scenario becomes
more favorable toward agent 1, a natural requirement is that the solution
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should not make agent 1 worse off. This is the axiom of monotonicity.
We further require that the solution to a problem should vary continu-

ously with the problem itself. A rule is continuous if it is continuous with
respect to the Hausdorff topology appropriately defined for this model.
Our last axiom states that given two problems, if we know the solution

recommended by the rule for each problem, then we can compute the solution
for the Minkowski sum of the two problems as the sum of the solutions of
the original problems. This axiom is called additivity.
Green [7] investigates the implications of all of the axioms we have dis-

cussed, in addition to two other axioms. One of his other axioms is a basic
symmetry condition. His other axiom, recursive invariance, is motivated
as follows. Suppose a utility pair is selected by a rule for a given problem.
Suppose this utility pair is added to the problem, resulting in a modified
problem. The rule applied to the modified problem should again select this
utility pair. Green characterizes the family of all rules satisfying his ax-
ioms. Our result is more general than his, but the rules we characterize
share several important characteristics with the rules he characterizes.
Our main result is a characterization of the family of rules satisfying

the axioms efficiency, translation invariance, monotonicity, continuity, and
additivity. To understand how these rules work, we first discuss the concept
of weighted utilitarianism. A weighted utilitarian rule is a rule in which
each agent is assigned a nonnegative weight; at least one of which is positive.
The agents’ weights are not the same. A natural social welfare function over
utility space is that which computes the weighted sum of the agents’ utilities.
A weighted utilitarian rule then works as follows: find the utility pair lying
in the problem which induces the maximal social utility. When transfers are
possible, this pair is not necessarily efficient. However, there is a remedy
for this inefficiency. There exists a unique efficient utility pair (i.e. after
transfers) whose social utility is the same as the original utility pair. The
weighted utilitarian rule selects this efficient utility pair.
The class of rules satisfying our five axioms is convex. This leads us to

a natural conjecture. Suppose we have given a probability distribution over
the weighted utilitarian rules. For any given problem, we can compute the
expected solution according to this distribution. This expected solution is
itself a utility pair; thus, we can naturally identify a rule with the probability
distribution. Such a rule will be called a “multi-utilitarian rule.” Our main
contribution is to show that the multi-utilitarian rules are the only rules
satisfying the five properties.
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Another result that we discuss concerns a weakening of additivity. Sup-
pose that we require that the solution for the “average” of two problems is
the average of the solutions. This condition is called mixture linearity, and
it plays a fundamental role in the work of Myerson [8]. Mixture linearity is a
requirement that precludes a rule from depending on when certain decisions
are made. Suppose that a fair coin is tossed to decide which of two problems
is to be faced. Mixture linearity requires that the ex-ante expected payoffs
to agents do not depend on whether or not the rule is applied before or after
the coin toss. We characterize the class of rules satisfying efficiency, transla-
tion invariance, monotonicity, continuity, and mixture linearity. These rules
are multi-utilitarian rules in which an additional exogenous transfer is made
between the agents.
Green’s rules are multi-utilitarian rules which feature a probability mea-

sure placing positive probability on exactly two weighted utilitarian rules.
The two weighted utilitarian rules are symmetric of each other, and have
a probability of one-half. We characterize all the multi-utilitarian rules
satisfying recursive invariance. We do not require symmetry. A multi-
utilitarian rule satisfying recursive invariance places probability on at most
two weighted utilitarian rules—one of which favors agent 1, and the other of
which favors agent 2. The weighted utilitarian rules need not be symmetric
of each other, and they need not be given equal probability. We call such
a rule a “bi-utilitarian rule.” It is obvious that by adding symmetry, we
obtain Green’s rules.
In order to establish that our generalization is useful, we discuss the axiom

of strong monotonicity. This axiom states that as a problem becomes more
favorable toward agent 1, then the solution should become more favorable
toward agent 1. None of the multi-utilitarian rules satisfying recursive in-
variance satisfy strong monotonicity. The class of all multi-utilitarian rules
satisfying strong monotonicity is characterized as the set of multi-utilitarian
rules whose associated probability measure has full support—what we call a
“full multi-utilitarian rule.”
Lastly, we discuss a version of our main theorem which holds in environ-

ments for which problems need not be convex. Theorem 2 in Appendix B
establishes that in such an environment, a rule is a multi-utilitarian rule if
and only if it satisfies efficiency, translation invariance, monotonicity, conti-
nuity, mixture linearity, and selection of singletons.
Section 2 introduces the formal model. Section 3 includes the main

results and proofs. Section 4 concludes.
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Figure 1: A problem

2 The model

2.1 Preliminaries

Let N ≡ {1, 2} be a set of agents. Say that a subset B ⊂R2 is bounded
above if there exists some x ∈ R2 such that B ⊂ {y : y1 ≤ x1 and y2 ≤ x2}.
Say it is comprehensive if for all x ∈ B, if y ≤ x, then y ∈ B. (Here
inequality is defined pointwise). A problem is a nonempty subset of R2
which is closed, convex, comprehensive, and bounded above. By B, we mean
the set of all problems.
Let x : B → R be defined as x (B) ≡ maxx∈B x1 + x2. We say x is a

solution to a problem B if x1+x2 ≤ x (B). Let H be a function defined on
the set of problems which maps to the set of hyperplanes of R2. Specifically,
let H (B) be defined as H (B) ≡ {x ∈ R2 : x1 + x2 = x (B)}. Thus, H (B)
is the set of efficient points that the agents can achieve by making transfers.
Figure 1 illustrates a typical problem.
A rule is a function f : B → R2 such that for all B ∈ B, f (B) is a

solution for B. We could conceivably generalize the class of rules to be
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multi-valued, but for our purposes, single-valued rules will suffice.

2.2 Properties of rules

We discuss several normative properties that rules may satisfy. The first is
the standard concept of efficiency.

Efficiency: For all B ∈ B, f (B) ∈ H (B).
Our next property is to be interpreted as robustness of the rule to the

underlying utility specification. Formally, any two problems B,B0 ∈ B such
that B0 = B + x for some x ∈ R2 can be viewed as arising from the same
underlying preferences. Hence, a rule should recommend the same social
alternative and transfers in the new problem as in the old problem. But the
utility value induced by this solution for the new problem is simply the old
utility value, translated by x.

Translation invariance: For all B ∈ B and all x ∈ R2, f (B + x) = f (B)+
x.

Our next property states that for problems which are the convex and
comprehensive hull of singletons, the rule should select that singleton. This
axiom is extremely weak and should be interpreted as saying that when there
is a single feasible action, this action should be chosen and transfers should
not be made.
Formally, K is a mapping which takes each set into its convex, compre-

hensive hull.

Selection of singletons: Let x ∈ R2. Then f (K ({x})) = x.
Suppose that we are given two problems B,B0 ∈ B. Say that B0 dom-

inates B for agent 1 if H (B) = H (B0) and the following two conditions
are satisfied:

B ∩ ©x ∈ R2 : x1 ≥ sup {x1 : x ∈ B0 ∩H (B0)}ª
⊂ B0 ∩ ©x ∈ R2 : x1 ≥ sup {x1 : x ∈ B0 ∩H (B0)}ª

and

B0 ∩ ©x ∈ R2 : x2 ≥ sup {x2 : x ∈ B ∩H (B)}ª
⊂ B ∩ ©x ∈ R2 : x2 ≥ sup {x2 : x ∈ B ∩H (B)}ª .
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Figure 2: The problem A dominates the problem B for agent 1

A problem B0 dominates B for agent 2 if B0 gives agent 1 “better possi-
bilities” than B. Note that it says nothing about what happens to the
possibilities for agent 2. We could also define a notion of B0 dominating B
for agent 2; the definition is symmetric. Figure 2 illustrates a scenario in
which A dominates the set B for agent 1.
We formulate this condition of domination so that we may discuss a simple

monotonicity condition. Thus, imagine B0 dominates B for agent 1; then it
is reasonable to require that agent 1 should benefit from this domination.

Monotonicity: Let B,B0 ∈ B and suppose that B0 dominates B for agent
1. Then f1 (B) ≤ f1 (B0).

Monotonicity could also be described using the language of set domina-
tion for agent 2; such variants are equivalent under efficiency. Green [7]
introduces monotonicity ; although his version is weaker.
The next property states that if two problems are “close,” then their solu-

tions should be “close.” In order to define this, we first define theHausdorff
extended metric on the space C of closed subsets of R2.1 Let d : R2 × R2

1For d to be an extended metric, the following must be true:
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be the Euclidean metric. Define the distance d∗ : R2 × C → R+ as

d∗ (x,B) ≡ inf
y∈B

d (x, y) .

Finally, the Hausdorff extended metric, dHaus : C×C → R+∪{∞}, is defined
as

dHaus (B,B
0) ≡ max

½
sup
x∈B0

d∗ (x,B) , sup
x∈B

d∗ (x,B0)
¾
.

We verify that dHaus is a metric when restricted to B.2

Proposition 1: The function dHaus is a metric when restricted to B.

Proof: By Lemma 3.57 of Aliprantis and Border, we know that dHaus
is an extended metric. Thus, we only need establish that for all B,B0 ∈ B,
dHaus (B,B

0) <∞. Let B,B0 ∈ B. Let y (B) ≡ (supx∈B x1, supx∈B x2) and
y (B0) ≡ (supx∈B0 x1, supx∈B0 x2). We claim that B ∩ B0 6= ∅. Thus, let
xB ∈ B and let xB0 ∈ B0. Then xB ∧ xB0 ∈ B ∩ B0, as xB ∧ xB0 ≤ xB,xB0 ,
and by comprehensivity of B and B0.3

Thus, let x∗ ∈ B∩B0. For all x ≤ x∗, x ∈ B∩B0, and hence d∗ (x,B) = 0
and d∗ (x,B0) = 0.
We claim that there exists c1 > 0 such that for all x ∈ B such that x1 ≥ x∗1

and x2 ≤ x∗2, d∗ (x,B0) ≤ c1. Thus, let x ∈ B satisfy the hypotheses. Set
c1 ≡ y1 (B) − x∗1 > 0. Then x1 ≤ y1 (B). Moreover, (x∗1, x2) ∈ B0 by
comprehensivity of B0, so that d ((x1, x2) , (x∗1, x2)) = x1 − x∗1 ≤ c1.
A similar argument establishes that there exists c2 such that for all x ∈ B0

such that x1 ≥ x∗1 and x2 ≤ x∗2, d∗ (x,B) ≤ c2. Moreover, there exists c3 such
that for all x ∈ B such that x2 ≥ x∗2 and x1 ≤ x∗1, d∗ (x,B0) ≤ c3. Finally,
there exists c4 such that for all x ∈ B0 such that x2 ≥ x∗2 and x1 ≤ x∗1,
d∗ (x,B) ≤ c4.
Lastly, A ≡ {x ∈ B : x ≥ x∗} and A0 ≡ {x ∈ B0 : x ≥ x∗} are compact

sets; hence, dHaus (A,A
0) <∞. By checking the various regions of B and B0,

i) For all B,B0 ∈ K, d (B,B0) ≥ 0 with equality if and only if B = B0
ii) For all B,B0 ∈ K, d (B,B0) = d (B0, B)
iii) For all A,B,C ∈ K, d (A,C) ≤ d (A,B) + d (B,C).
The function d is a metric if it only takes real values.
2We slightly abuse notation by referring to dHaus on B as dHaus, when it should really

be written dHaus|B.
3Here, ‘∧’ refers to the meet of two elements, or the pointwise infimum.

8



it is readily verified that

dHaus (B,B
0) ≤ max

½
c1, c2, c3, c4,max

x∈A
d∗ (x,B0) ,max

x∈A0
d∗ (x,B)

¾
,

which is in turn less than or equal to
max {c1, c2, c3, c4,maxx∈A d (x,A0) ,maxx∈A0 d (x,A)} <∞.
The space B is endowed with the topology generated by dHaus. Our

next requirement is that a rule is continuous in this topology, called the
Hausdorff topology.

Continuity: The rule f is continuous in the Hausdorff topology.

Continuity is a property which is very restrictive in this model. As a
natural example of a rule satisfying all of our axioms except for continuity,
let f the rule which selects the midpoint of the optimal efficient point for
agent 1 and the optimal efficient point for agent 2.
Lastly, we discuss additivity. For all A,B ∈ B, define A + B ≡

{x+ y : x ∈ A, y ∈ B}.4 Note that A+B ∈ B. Most authors view additivity
as a condition which states that a rule is invariant under the sequencing of
when problems are faced.

Additivity: For all A,B ∈ B, f (A+B) = f (A) + f (B).

Under very mild conditions, additivity is equivalent to the following
weaker condition. We use the additivity condition so that the parallels
between our work and Green’s work are clear.

Mixture linearity: For all A,B ∈ B, f ¡A+B
2

¢
= f(A)+f(B)

2
.

Mixture linearity is the requirement that a rule should be invariant to
“timing effects.” Suppose that the two problems A and B are faced with
equal probabilities. Such a scenario induces a natural utility possibility set;
A+B
2
. Applying the rule at this ex-ante stage results in a solution of f

¡
A+B
2

¢
.

Waiting until after the randomization to solve the problem results in an ex-
ante expected solution of f(A)+f(B)

2
. Mixture linearity requires that there is

no ex-ante benefit to either agent from either procedure.

4The operator ‘+’ is referred to as the Minkowski sum.
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Proposition 2: If a rule f satisfies f (K ({0})) = 0, then it satisfies addi-
tivity if and only if it satisfies mixture linearity.

Proof: Let f be a rule satisfying f (K ({0})) = 0. Suppose that f

satisfies additivity. Let A,B ∈ B. We will show that f ¡A+B
2

¢
= f(A)+f(B)

2
.

By additivity, f
¡
A+B
2

¢
+ f

¡
A+B
2

¢
= f (A+B). By additivity, f (A+B) =

f (A) + f (B). Thus, f
¡
A+B
2

¢
= f(A)+f(B)

2
. Conversely, suppose that f

satisfies mixture linearity. Let A,B ∈ B. We will show that f (A+B) =

f (A) + f (B). Thus, f
¡
A+B
2

¢
= f

³
(A+B)
2

+ K({0})
2

´
. By mixture linearity,

f
³
(A+B)
2

+ K({0})
2

´
= f(A+B)+f(K({0}))

2
. By assumption, f(A+B)+f(K({0}))

2
=

f(A+B)
2

. By mixture linearity, f
¡
A+B
2

¢
= f(A)+f(B)

2
. Hence, f(A+B)

2
=

f(A)+f(B)
2

, so that f (A+B) = f (A) + f (B).
We establish another connection between our axioms which will be useful

for the proof of the main result.

Proposition 3: If a rule satisfies additivity, then it satisfies translation in-
variance if and only if it satisfies selection of singletons.

Proof: Suppose f is additive, and that it satisfies translation invariance.
Let x ∈ R2. Then, by additivity, f (2K ({0})) = 2f (K ({0})). But by
definition, 2K ({0}) = K ({0}). Thus, f (K ({0})) = 2f (K ({0})), so that
f (K ({0})) = 0. Thus, f (K ({x})) = f (K ({0}) + x). By translation
invariance, f (K ({0}) + x) = f (K ({0})) + x. By the preceding statement,
f (K ({0})) + x = x, so that f (K ({x})) = x.
Next, suppose that f satisfies selection of singletons. Then for all

B ∈ B and all x ∈ R2, f (B + x) = f (B +K ({x})). By additiv-
ity, f (B +K ({x})) = f (B) + f (K ({x})). By selection of singletons,
f (K ({x})) = x. Thus, f (B + x) = f (B) + x.

2.3 Multi-utilitarianism

We now define the set of rules which will be the focus of our study. Let
λ ∈ [0, 1]. For λ 6= 1/2, define the λ-utilitarian rule Uλ : B → R2 as
follows: for all B ∈ B,

Uλ (B) ≡
½
y ∈ H (B) : λy1 + (1− λ) y2 = sup

x∈B
λx1 + (1− λ)x2

¾
.
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Figure 3: A weighted utilitarian rule

Call this class of rules the weighted utilitarian rules. Clearly, a rule cor-
responding to λ = 1/2 is not well-defined. In standard normative economics,
the weighted utilitarian rules select a feasible alternative which maximizes a
weighted sum of agents’ utilities. Here, such a rule is generally not efficient.
Thus, a weighted utilitarian rule specifies an efficient transfer which gives the
same aggregate weighted utility as the maximal aggregate weighted utility
which is feasible before transfers. Figure 3 illustrates a typical weighted
utilitarian rule, here the point y ≡ Ux (B).
A distinguishing feature of the quasilinear model is that the set of efficient

solutions is convex for all problems. This feature allows us to construct many
efficient rules out of old rules. Thus, let ν be a probability measure on the
measurable space ([0, 1] \ {1/2} ,Σ), where Σ are the Borel sets restricted to
[0, 1] \ {1/2}. Define the ν-utilitarian rule Uν : B → R2 as follows: for
all B ∈ B,

Uν (B) ≡
Z
[0,1]\{1/2}

Uλ (B) dν (λ) .

Call this class of rules the multi-utilitarian rules.
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3 Results

3.1 The main result

The main result states that a rule satisfies the five properties if and only if
it is a multi-utilitarian rule.

Theorem 1: A rule satisfies efficiency, translation invariance, monotonic-
ity, continuity, and additivity if and only if it is a multi-utilitarian rule.

Theorem 1 is tight; we provide the independence of the axioms in Ap-
pendix A.
Theorem 1 is stated for an environment in which the domain of a rule is

B; however, there are many subclasses of B for which the theorem still holds.
Call a problem B ∈ B compactly generated if there exists a compact setK
such that B = K (K). The set of compactly generated problems is written
BK. Theorem 1 holds if the axioms are imposed on the restricted set of
problems BK . Another example of an important domain for which Theorem
1 holds is the class of polytope problems, which are those problems for
which there exists a finite set {x1, ..., xm} such that B = K ({x1, ..., xm}).
A version of Theorem 1 holds for even larger domains of problems. On

the domain of problems which are convex, closed, and bounded above, but
not necessarily convex, the multi-utilitarian rules are characterized by ef-
ficiency, translation invariance, monotonicity, continuity, mixture linearity,
and selection of singletons. Nonconvex environments are discussed formally
in Appendix B, where the preceding result is proved (Theorem 2).

3.2 A discussion of proof strategy

By translation invariance and continuity, we may restrict ourselves to the
class of problems whose efficient set consists of points whose aggregate utility
is zero and which have a unique efficient utility pair. We can embed any
such problem into the space of continuous functions on [0, 1]. Specifically,
each such problem is uniquely determined by the solutions recommended for
each of the weighted utilitarian rules. Thus, for a given problem B, Uλ (B)
is a continuous function in λ (with the value for λ = 1/2 given by H (B)∩B).
We work on the space of continuous functions which are induced by problems.
We define an induced “rule” on this space of functions. It is easily verified
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that this rule is additive and monotonic (and hence continuous in the sup-
norm topology). The rule may be extended to the linear hull of this class
of functions, preserving additivity and monotonicity. By using a lattice-
theoretic version of the Hahn-Banach theorem, we extend this monotonic
functional to the entire space of continuous functions on [0, 1] to obtain a
monotonic linear functional. Applying the Riesz representation theorem, we
conclude that the rule on the space of continuous functions is represented
by integration with respect to a measure. Monotonicity guarantees that
the measure is positive, and translation invariance guarantees that it assigns
measure one to [0, 1]; hence it is a probability measure. Translating back
into the space of problems results in a multi-utilitarian rule on the restricted
class of problems. We then show how to extend the characterization on this
restricted class to the class of all problems. A similar proof strategy is used
in the work of Dekel, Lipman, and Rustichini [4], in the context of choice
with unforeseen contingencies.

3.3 Proof of Theorem 1

We will not prove that a multi-utilitarian rule satisfies the axioms; this can
be easily verified. The opposite direction is proved below. We note that all
of the steps are equally valid on the subdomains mentioned above.

Proof: Step 1: Establishing the homogeneity of f.

We claim that for all B ∈ B and all α ≥ 0, f (αB) = αf (B). Let α ∈ Q.
Then α = m

n
for some m,n ∈ N. Let x = f

¡
1
n
B
¢
. Then by additivity,

as B = n
¡
1
n
B
¢
, nx = f (B). Therefore, f

¡
1
n
B
¢
= 1

n
f (B). By additivity,

f
¡
m
n
B
¢
= m

n
f (B), so that f (αB) = αf (B). The result obtains by the

density of the rationals and continuity.

Step 2: Embedding rules and problems into the space of con-
tinuous functions, and establishing properties on the induced func-
tional.

Define B∗ ⊂ B to be the class of problems which have a single efficient
alternative. Formally, B ∈ B∗ if H (B) ∩ B is a singleton. Let B0 ⊂ B∗ so
that B ∈ B0 if x (B) = 0. Most of the work of the proof is done in B0.
Let C ([0, 1]) be the class of continuous, real-valued functions defined on

the unit interval endowed with the sup-norm topology.
Define the function σ : B0 → C ([0, 1]) by σ (B) (λ) ≡ Uλ

1 (B). It is easily
verified that for all B, σ (B) is a continuous function on [0, 1].
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Moreover, σ is one-to-one between B0 and C ([0, 1]). It is a simple exercise
to verify that for all B,B0 ∈ B0, σ (B +B0) = σ (B) + σ (B0). Further, for
all α ≥ 0 and all B ∈ B0, σ (αB) = ασ (B). (These properties are easily
verified, similarly to Rockafellar [9], 16.4).
Moreover, B0 dominates B for agent 1 if and only if σ (B0) ≥ σ (B). To

see this, let B,B0 ∈ B0 such that B0 dominates B for agent 1. It is obvious
by definition that σ (B0) (1/2) ≥ σ (B) (1/2). We will show that for all
λ ∈ [0, 1/2), σ (B0) (λ) ≥ σ (B) (λ). A symmetric argument will establish
the proof for λ ∈ (1/2, 1]. Thus, let λ ∈ [0, 1/2). Let

A0 ≡ B0 ∩ ©x ∈ R2 : x2 ≥ sup {x2 : x ∈ B ∩H (B)}ª
A ≡ B ∩ ©x ∈ R2 : x2 ≥ sup {x2 : x ∈ B ∩H (B)}ª .

As B0 dominates B for agent 1, A0 ⊂ A. Defining supx∈∅ f (x) as −∞, as
A0 ⊂ A,

sup
x∈A0

λx1 + (1− λ)x2 ≤ sup
x∈A

λx1 + (1− λ)x2.

Let x∗ ≡ x ∈ H (B) such that x∗2 = sup {x2 : x ∈ B ∩H (B)}. We claim
that for all x ∈ B0\A0, λx1+(1− λ)x2 ≤ λx∗1+(1− λ)x∗2. Suppose that this
statement is false, so that there exists x ∈ B0\A0 such that λx1+(1− λ)x2 >
λx∗1 + (1− λ)x∗2. As x /∈ A0, x2 ≤ x∗2. Thus,

λ (x1 − x∗1) > (1− λ) (x∗2 − x2) ,

where the right hand side is nonnegative, as λ < 1/2 and x2 ≤ x∗2. Conclude
that λ (x1 − x∗1) > 0; in particular, λ > 0, so that

x1 − x∗1 >
µ
1− λ

λ

¶
(x∗2 − x2) .

But
¡
1−λ
λ

¢ ≥ 1, so that
x1 − x∗1 > x∗2 − x2,

and
x1 + x2 > x

∗
1 + x

∗
2,

contradicting the fact that H (B) = H (B0). It is then clear that

sup
x∈B0

λx1 + (1− λ)x2 ≤ max
½
sup
x∈A

λx1 + (1− λ)x2,λx
∗
1 + (1− λ) x∗2

¾
,
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from which we conclude (using the fact that A ⊂ B and x∗ ∈ B)

sup
x∈B0

λx1 + (1− λ) x2 ≤ sup
x∈B

λx1 + (1− λ) x2.

Next, we claim that for all λ < 1/2, Uλ
1 (B) ≤ Uλ

1 (B
0) if and only if

supx∈B0 λx1 + (1− λ)x2 ≤ supx∈B λx1 + (1− λ)x2. To this end, we need
only establish that Uλ

1 (B) ≤ Uλ
1 (B

0) implies supx∈B0 λx1 + (1− λ)x2 ≤
supx∈B λx1 + (1− λ)x2 and that U

λ
1 (B) < Uλ

1 (B
0) implies supx∈B0 λx1 +

(1− λ)x2 < supx∈B λx1 + (1− λ)x2. We will show the first statement;
the second follows by replacing the appropriate weak inequalities by strict
inequalities. By definition,

λUλ
1 (B

0) + (1− λ)
¡−Uλ

1 (B
0)
¢
= sup

x∈B0
λx1 + (1− λ)x2

and
λUλ

1 (B) + (1− λ)
¡−Uλ

1 (B)
¢
= sup

x∈B
λx1 + (1− λ)x2.

As λ < 1/2, λ
¡
Uλ
1 (B

0)− Uλ
1 (B)

¢ ≤ (1− λ)
¡
Uλ
1 (B

0)− Uλ
1 (B)

¢
. Hence

λUλ
1 (B

0) + (1− λ)
¡−Uλ

1 (B
0)
¢ ≤ λUλ

1 (B) + (1− λ)
¡−Uλ

1 (B)
¢
.

Thus, for all λ < 1/2, we conclude that σ (B) (λ) ≤ σ (B0) (λ). The
argument for λ > 1/2 is symmetric. Thus, if B0 dominates B for agent 1,
then σ (B) ≤ σ (B0).
Next, we show that if σ (B) ≤ σ (B0), then B0 dominates B for agent

1. For all λ 6= 1/2, by the argument above, if σ (B) ≤ σ (B0), we conclude
supx∈B0 λx1 + (1− λ)x2 ≤ supx∈B λx1 + (1− λ)x2. Suppose, by means
of contradiction that B0 does not dominate B for agent 1. Without loss
of generality, that there exists some y∗ ∈ B0 such that y∗2 ≥ x∗2 and y

∗ /∈
B. By a version of the Separating Hyperplane Theorem (Corollary 5.59
of Aliprantis and Border [1]), there exists a pair (λ, 1− λ) ∈ R2 such that
λy∗1 + (1− λ) y∗2 > supx∈B λx1 + (1− λ)x2. We claim that λ ∈ [0, 1/2].
Clearly, λ ∈ [0, 1], or else the supremum over B does not exist. So, suppose
that λ > 1/2. In particular, λy∗1 +(1− λ) y∗2 > λx∗1+(1− λ)x∗2, from which
we conclude that λ (y∗1 − x∗1) > (1− λ) (x∗2 − y∗2). As λ > 0, this implies that
y∗1 − x∗1 >

¡
1−λ
λ

¢
(x∗2 − y∗2). Next, as y∗2 > x∗2, and as

¡
1−λ
λ

¢
< 1, we conclude¡

1−λ
λ

¢
(x∗2 − y∗2) > x∗2 − y∗2. Hence y∗1 − x∗1 > x∗2 − y∗2, or y∗1 + y∗2 > x∗1 + x∗2,

contradicting H (B) = H (B0) . Thus, λ ∈ [0, 1/2]. If λ = 1/2, supx∈B0 λx1+
(1− λ)x2 ≥ λy∗1 + (1− λ) y∗2 > supx∈B λx1+ (1− λ)x2 contradicts H (B) =
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H (B0). So λ < 1/2. But then supx∈B0 λx1+(1− λ)x2 ≥ λy∗1+(1− λ) y∗2 >
supx∈B λx1 + (1− λ)x2, so that σ (B

0) (λ) > σ (B) (λ), a contradiction.
Define T : σ (B0) → R as T (σ (B)) ≡ f1 (B). The function T is then

additive and homogeneous on σ (B0). As f is monotonic, then by the pre-
ceding statements, T is monotonic, and hence continuous in the sup-norm
topology.

Step 3: Extending the linear functional to the space of contin-
uous functions.

We extend T to a vector subspace of C ([0, 1]). Thus, let H ≡
{g − h : g, h ∈ σ (B0)}. Clearly, H is now a vector subspace. Define
T ∗ : H → R by T ∗ (g − h) = T (g) − T (h). We claim that T ∗ is well-
defined, linear, and continuous. To see that it is well-defined, suppose that
g − h ∈ H can be written as g − h = g0 − h0. Thus, g + h0 = g0 + h.
We conclude that T (g + h0) = T (g0 + h); moreover, by additivity of T ,
T (g + h0) = T (g) + T (h0) and T (g0 + h) = T (g0) + T (h). Therefore,
T (g) + T (h0) = T (g0) + T (h). Hence, T (g) − T (h) = T (g0) − T (h0).
Therefore, T ∗ is well-defined. As T is linear, so is T ∗. As T is mono-
tonic, T ∗ is monotonic. To see this, suppose that g − h ≥ 0. Then
T ∗ (g − h) = T (g) − T (h). Since g ≥ h, and as T is monotonic,
T (g)− T (h) ≥ 0. Hence T ∗ is monotonic, and hence continuous.
We extend T ∗ to all of C ([0, 1]). We can extend T ∗ to all of C ([0, 1]) so

that the extension is monotonic (Corollary III.9.12 of Conway [3], using the
fact that 1 ∈ H, where 1 = σ (K ({(1,−1)}))). We refer to this continuous
linear extension as T ∗∗.

Step 4: Obtaining the measure representation of the rule for a
restricted class of problems.

By the Riesz representation theorem (for example, see Corollary 13.15 of
Aliprantis and Border [1]), there exists a countably additive measure ν on
([0, 1] ,Σ) such that

T ∗∗ (f) ≡
Z
[0,1]

f (λ) dν (λ) .

Further, ν is positive if T ∗∗ is monotonic.
We claim that for all c ∈ R, T ∗∗ (c) = c.5 It is clear by definition that

σ (K ({(c,−c)})) is the constant function c. Moreover, we know by selection
5We abuse notation in a standard way by identifying a constant function with the value

that constant function takes.

16



of singletons that f (K ({(c,−c)})) = (c,−c). Thus, by definition of T ,
T (c) = c and hence T ∗∗ (c) = c. As for all constant functions c, T ∗∗ (c) = c,
we conclude that T ∗∗ (c) = ν ([0, 1]) c = c, so that ν ([0, 1]) = 1.
By definition of T , for all B ∈ B0, f (B) = (T (σ (B)) ,−T (σ (B))) =³R
[0,1]

σ (B) (λ) dν (λ) ,− R
[0,1]

σ (B) (λ) dν (λ)
´
. Rewriting,

f (B) =

Z
[0,1]

(σ (B) (λ) ,−σ (B) (λ)) dν (λ) .

For all λ, (σ (B) (λ) ,−σ (B) (λ)) = Uλ (B). Thus,

f (B) =

Z
[0,1]

Uλ (B) dν (λ) .

We show that this formula holds for all B ∈ B∗. Let B ∈ B∗ and let x
satisfy B+x ∈ B0.6 Then f (B + x) = R

[0,1]
Uλ (B + x) dν (λ). For all λ, Uλ

is translation invariant (it can easily be shown to hold for λ = 1/2), so that
Uλ (B + x) = Uλ (B) + x. Hence f (B + x) =

R
[0,1]

¡
Uλ (B) + x

¢
dν (λ).

As ν ([0, 1]) = 1, the preceding is equal to
R
[0,1]
Uλ (B) dν (λ) + x. By

translation invariance of f , f (B + x) = f (B) + x. Hence, f (B) + x =R
[0,1]
Uλ (B) dν (λ) + x, so that f (B) =

R
[0,1]
Uλ (B) dν (λ).

Step 5: Verifying that 1/2 has measure zero, and completing
the characterization.

We extend the representation to all of B. First, we establish that
ν ({1/2}) = 0. Let {Bn},{B0n} ⊂ B be the following sequences of problems:
for all n, Bn ≡ K

¡©¡
1− 1

n
,−1¢ , (0, 0)ª¢ and B0n ≡ K ¡©(1,−1) , ¡0,− 1

n

¢ª¢
.

Then, note that each of Bn and B
0
n converge to K ({(1,−1) , (0, 0)}) in the

Hausdorff topology. Thus, by continuity, limn→∞ f (Bn) = limn→∞ f (B0n).
In particular, we can identify each Bn and B

0
n with its induced continuous

function, σ (Bn) and σ (B0n). It is simple to verify that the sequence σ (Bn)
converges pointwise to

F (λ) ≡
½
0 for λ ≤ 1/2
1 for λ > 1/2

and that the sequence σ (B0n) converges pointwise to

F 0 (λ) ≡
½
0 for λ < 1/2
1 for λ ≥ 1/2 .

6For example, let x = (−x (B) , 0).
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In particular,

lim
n→∞

Z
[0,1]

σ (Bn) (λ) dν (λ) = lim
n→∞

Z
[0,1]

σ (B0n) (λ) dν (λ) .

Each of σ (Bn) and σ (B0n) are bounded sequences; hence, we may apply the
Lebesgue dominated convergence theorem (for example, see Theorem 11.20
of Aliprantis and Border [1]). We concludeZ

[0,1]

F (λ) dν (λ) =

Z
[0,1]

F 0 (λ) dν (λ) .

Moreover,
R
[0,1]
F (λ) dν (λ) = ν ((1/2, 1]) and

R
[0,1]
F 0 (λ) dν (λ) =

ν ([1/2, 1]). Thus ν ((1/2, 1]) = ν ([1/2, 1]), or ν ({1/2}) = 0.
As the set B∗ is dense in B in the Hausdorff topology, we establish that

for all B ∈ B,
f (B) =

Z
[0,1]

Uλ (B) dν (λ) ,

independently of how U1/2 is defined. We may thus write

f (B) =

Z
[0,1]\{1/2}

Uλ (B) dν (λ) .

3.4 A characterization on the basis of mixture linear-
ity

We establish a characterization of a class of rules based on mixture linearity.
Fix a multi-utilitarian rule, Uν. Fix some exogenous transfer from agent 2
to agent 1, say, c. For any problem B, such a rule recommends whatever is
recommended by Uν , plus the transfer from agent 2 to agent 1.

Corollary 1: A rule f satisfies efficiency, translation invariance, mono-
tonicity, continuity, and mixture linearity if and only if there ex-
ist c ∈ R and a multi-utilitarian rule Uν such that for all B ∈ B,
f (B) = (c,−c) + Uν (B).
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Proof: It is simple to verify that any such rule satisfies the axioms.
Conversely, let f be a rule satisfying the axioms. By efficiency, the sum of

the elements of f (K ({0})) is equal to zero. Thus, let (c,−c) ≡ f (K ({0})).
Let f∗ be the rule defined so that for all B ∈ B, f∗ (B) ≡ f (B)− (c,−c).

Then it is trivial to verify that f∗ satisfies the axioms listed in the hypothesis
of the corollary. Moreover, f∗ (K ({0})) = 0. Thus, by Proposition 2, we
may conclude that f∗ is additive. Hence f∗ is a multi-utilitarian rule, say
Uν. Therefore, f (B) ≡ (c,−c) + Uν (B).

3.5 On Green’s Theorem and recursive invariance

Green’s theorem invokes all of the axioms we discuss (except for a weaker
version of monotonicity), in addition to the following. It states that if a
solution for a problem is determined by a rule, then adding this solution to
the utility possibilities set should not change the solution selected by the
rule.

Recursive invariance: For all B ∈ B, f (K (B ∪ {f (B)})) = f (B).
Green attributes this axiom to Chun [2], although Chun never actually

uses it in any characterization. Together with a basic symmetry condition,
Green characterizes a one-parameter subset of the multi-utilitarian rules,
which for lack of better terminology, we call class G. Members of G are
described as follows. Fix a parameter λ ∈ [0, 1/2). Let νλ be the probability
measure such that νλ ({λ}) = νλ ({1− λ}) = 1/2. The elements of G are
the multi-utilitarian rules corresponding to such probability measures.
We will show how to derive a result related to Green’s from ours as a

corollary, without using the symmetry axiom. The proof of Green’s main
result relies on a beautiful functional equations argument. Here, our argu-
ment is primarily measure-theoretic.
Define a generalization of Green’s rules as follows. Say a multi-utilitarian

rule f is a bi-utilitarian rule if its associated probability measure ν has a
support of at most two elements, one of which lies above 1/2 and the other of
which lies below 1/2 (recall that the support of a probability measure is the
intersection of all closed sets having probability one).7 A bi-utilitarian rule

7An important feature of the definition of a bi-utilitarian rule is that there can be at
most one weighted utilitarian rule favoring agent 1 and at most one favoring agent 2. In
other words, it cannot put support on two weighted utilitarian rules, each of which favor
agent 1. This is not indicated in the simple terminology “bi-utilitarian.”
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need not place equal probability on each of the two weighted utilitarian rules
with which it is associated. In fact, it might place positive probability on
only one weighted utilitarian rule; such a rule is itself a weighted utilitarian
rule. It is clear that requiring symmetry will force a bi-utilitarian rule to be
an element of G.

Corollary 2: A rule satisfies efficiency, translation invariance, monotonic-
ity, continuity, additivity, and recursive invariance if and only if it is a
bi-utilitarian rule.

Proof: To show that a bi-utilitarian rule satisfies the axioms is simple.
Conversely, suppose f is a rule satisfying the six axioms. By means of
contradiction, suppose that f is not a bi-utilitarian rule. By Theorem 1, f
is a multi-utilitarian rule. Let ν be the probability measure associated with
f . As f is not a bi-utilitarian rule, we may assume without loss of generality
that the support of ν contains more than one element which is greater than
1/2.
We will show that the support of ν contains at most one point greater

than 1/2. To this end, suppose by means of contradiction that it contains
at least two. Let λ∗ > 1/2 be an element in the support which is strictly
less than the supremal element.
We now construct a problem which is the intersection of the hyper-

planes in the directions (λ∗, 1− λ∗), (1, 0), and (0, 1). Thus, let B ≡
{x ∈ R2 : λ∗1x1 + (1− λ∗1)x2 ≤ 0} ∩ {x ∈ R2 : x1 ≤ 1} ∩ {x ∈ R2 : x2 ≤ 0}.
Then for all λ ≤ λ∗, (including λ < 1/2), Uλ (B) = 0, and for all
λ > λ∗, Uλ

1 (B) > 0. As the support of ν contains points which are
greater than λ∗ (as λ∗ was less than the supremal element), we conclude
that Uν

1 (B) > 0. In fact, there exists some λ0 > λ∗ such that for all
λ ∈ (1/2,λ0), Uλ

1 (K (B ∪ {Uν (B)})) = Uν
1 (B) > Uλ

1 (B). For all other
λ, Uλ (K (B ∪ {Uν (B)})) = Uλ (B). The set (1/2,λ0) has positive mea-
sure according to ν, so that this implies Uν

1 (K (B ∪ {Uν (B)})) > Uν
1 (B),

contradicting recursive invariance.

3.6 On strongly monotonic multi-utilitarian rules

A natural question is whether or not there are interesting multi-utilitarian
rules which do not belong to G. The following axiom, which is a strength-
ening of monotonicity, is violated by all members of G.
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Strong monotonicity: Let B,B0 ∈ B and suppose that B0 dominates B
for agent 1 and that B 6= B0. Then f1 (B) < f1 (B0).

Multi-utilitarian rules satisfying strong monotonicity exist, and in fact a
characterization of this family is possible. We demonstrate that a multi-
utilitarian rule satisfies strong monotonicity if and only if the associated
probability measure has a support of [0, 1] \ {1/2} in the relative topology
on [0, 1] \ {1/2}. Say a rule is a full multi-utilitarian rule if it is a multi-
utilitarian rule whose associated probability measure has full support.

Corollary 3: A rule satisfies efficiency, translation invariance, strong mono-
tonicity, continuity, and additivity if and only if it is a full multi-
utilitarian rule.

Proof: It is simple to show that a full multi-utilitarian rule satisfies
strong monotonicity.
We prove the other direction. Let f be a rule satisfying the five axioms

listed in the theorem. Strong monotonicity implies monotonicity, so by
Theorem 1, f is a multi-utilitarian rule. Let ν be the probability measure
associated with f . It is enough to show that for all open intervals (λ1,λ2)
with λ1 < λ2, which do not include 1/2, ν ((λ1,λ2)) > 0. Let (λ1,λ2) be such
an interval, and without loss of generality, suppose that λ1 > 1/2.
We construct two problems, B0 and B. Let

B0 ≡ ©
x ∈ R2 : λ1x1 + (1− λ1)x2 ≤ 0

ª ∩ ©x ∈ R2 : λ2x1 + (1− λ2) x2 ≤ 0
ª

∩©x ∈ R2 : x1 ≤ 1ª ∩ ©x ∈ R2 : x2 ≤ 1ª .
Let B ≡ K

³n³
1, λ1−1

λ1

´
,
³
λ2−1
λ2
, 1
´o´

. The problem B0 is the convex, com-

prehensive hull of B with the origin. The important point (which is also
easily verified) is that B0 dominates B for agent 1 and for all λ /∈ (λ1,λ2),
Uλ (B) = Uλ (B0). By strong monotonicity, f1 (B

0) > f1 (B). Thus, by
definition of f ,Z

[0,1]\{1/2}
Uλ
1 (B

0) dν (λ) >
Z
[0,1]\{1/2}

Uλ
1 (B) dν (λ) .

Rewriting, Z
[0,1]\{1/2}

Uλ
1 (B

0)− Uλ
1 (B) dν (λ) > 0,
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and as for all λ /∈ (λ1,λ2), Uλ (B) = Uλ (B0), concludeZ
(λ1,λ2)

Uλ
1 (B

0)− Uλ
1 (B) dν (λ) > 0,

establishing that ν ((λ1,λ2)) > 0. Thus f is a full multi-utilitarian rule.

4 Conclusion

A last point that bears mentioning: Green discusses a strengthening of con-
tinuity which involves the “bounded convergence topology.” A sequence
{Bn} converges to B in the bounded convergence topology if and only if for
all compact sets K, K ∩Bn converges to K ∩B. Continuity with respect to
the bounded convergence topology is stronger than continuity with respect
to the Hausdorff topology; for example, the sequence K ({(0, 0) , (1,−n)})
converges to K ({(0, 0)}) as n → ∞ in the bounded convergence topology,
but not in the Hausdorff topology. Strengthening continuity in Theorem 1
in this sense results in the additional implication that ν ({0}) = ν ({1}) = 0.
Extending the families of rules characterized in this work to environments

involving many agents is the subject of ongoing research.

5 Appendix A: On the independence of the

axioms in Theorem 1

In this Appendix, for each axiom used in the characterization provided in
Theorem 1, we provide an example of a rule (or family of rules) which violates
this axiom, yet satisfies the remaining axioms of Theorem 1.

Example 1: A rule that satisfies translation invariance, monotonicity, con-
tinuity, and additivity but not efficiency. Let f (B) ≡ U0 (B)∧U1 (B).
As is stated in the text, monotonicity has a parallel statement for agent
2 (which is equivalent to the original statement of monotonicity under
the efficiency axiom). The rule f satisfies the alternative version of
monotonicity.

Example 2: A rule that satisfies efficiency, monotonicity, continuity, and
additivity but not translation invariance. Let f (B) be the point of
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equal coordinates on H (B). Thus, x = f (B) if and only if x1 = x2
and x ∈ H (B).

Example 3: A rule that satisfies efficiency, translation invariance, conti-
nuity, and additivity but not monotonicity. This class of rules can
be characterized (by strengthening continuity to Lipschitz continu-
ity), and we will call them the generalized multi-utilitarian rules.
Formally, let ν be a countably additive signed measure of bounded
variation on ([0, 1] \ {1/2} ,Σ) satisfying ν ([0, 1] \ {1/2}) = 1. Define
Uνsuch that for all B ∈ B,

Uν (B) ≡
Z
[0,1]\{1/2}

Uλ (B) dν (λ) .

Example 4: A rule that satisfies efficiency, translation invariance, mono-
tonicity, additivity but not continuity. An example of this type was
already provided in the text. For another example, give agent 1 his
supremal utility in the efficient set:

f (B) ≡
n
x ∈ H (B) : x1 ≥ y1 for all y ∈ H (B)

o
.

Example 5: A rule that satisfies efficiency, translation invariance, mono-
tonicity, and continuity but not additivity. This is perhaps the easiest
example to think of. A simple example, inspired by the decision the-
ory literature (see Gilboa and Schmeidler [5]) is the following. Let Π
be a convex and weak∗ compact set of Borel probability measures over
[0, 1] \ {1, 2}. Define

f (B) ≡
µ
min
p∈Π

Z
[0,1]\{1/2}

Uλ
1 (B) dp (λ) , x (B)−min

p∈Π

Z
[0,1]\{1/2}

Uλ
1 (B) dp (λ)

¶
.

Then this rule satisfies all of the axioms but additivity.

6 Appendix B: Nonconvexities

The analysis above relies on the convex structure of problems. However,
we can think of many instances where problems need not be convex. It is
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therefore of interest that a version of Theorem 1 still holds when the class of
problems is expanded to cover this possibility.
Formally, define a generalized problem as a subset of R2 which is

closed, comprehensive and bounded above. By BG, we mean the class of
generalized problems. Note that B ⊂ BG. All of the axioms and definitions
discussed in the main body of the text are meaningful as stated. The main
point of this Appendix is that Corollary 1 to Theorem 1 is also meaningful.
The proof will rely on the following Lemma and Proposition. It is im-

portant to note that for all B,B0 ∈ BG, B +B0 ∈ BG. Let C be a mapping
which takes each set into its comprehensive hull.

Lemma: Let K,K 0 be compact sets. Then dHaus (C (K) , C (K 0)) ≤
dHaus (K,K

0).

Proof: Clearly, for all x ∈ K, d∗ (x, C (K 0)) ≤ d∗ (x,K 0). A similar
statement holds for all x ∈ K 0. For all x ∈ C (K) ∩ C (K 0), d∗ (x, C (K 0)) =
d∗ (x, C (K)) = 0. Lastly, suppose that x ∈ C (K) \C (K 0). It is a simple
matter to verify that for all y ∈ R2, d (x, x ∧ y) ≤ d (x, y). There exists
some x0 ∈ K such that x ≤ x0. For all y ∈ K 0, d (x0, x0 ∧ y) ≤ d (x0, y).
Then, d (x ∧ x0, x0 ∧ y) ≤ d (x0, x0 ∧ y), or d (x, x0 ∧ y) ≤ d (x0, y). Lastly,
d (x, x ∧ (x0 ∧ y)) ≤ d (x, x0 ∧ y). But d (x, x ∧ (x0 ∧ y)) = d (x, x ∧ y). Note
that x ∧ y ∈ C (K 0). Thus, d (x, x ∧ y) ≤ d (x0, y) ≤ dHaus (K,K 0). Taken
together, these results imply that dHaus (C (K) , C (K 0)) ≤ dHaus (K,K 0).

Proposition 2: Let B ∈ BG be compactly generated. Then
Pn
k=1B

n
→

K (B) in the Hausdorff topology.

Proof: Let B ∈ BG be compactly generated, in the sense that there exists
some compactK so that B = C (K). It is a direct implication of the Shapley-
Folkman Theorem (see Starr [10], p. 36) that

Pn
k=1K

n
converges to its convex

hull conv (K) in the Hausdorff topology as n → ∞. Note that K (B) =
C (conv (K)). Thus, dHaus

³Pn
k=1B

n
,K (B)

´
≤ dHaus

³Pn
k=1K

n
, conv (K)

´
by

the preceding Lemma, so that
Pn
k=1B

n
→ K (B).

Theorem 2: A rule f defined on BG satisfies efficiency, translation invari-
ance, monotonicity, continuity, andmixture linearity if and only if there
exist c ∈ R and a multi-utilitarian rule Uν such that for all B ∈ B,
f (B) = (c,−c) + Uν (B).
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Proof: Recall that Theorem 1 and Corollary 1 held on the domain of
compactly generated problems. Thus, restricted to the domain of convex
and compactly generated problems, f has the desired representation, with
constant c and measure ν. Next, mixture linearity can be applied inductively

to show that for all k, f
³P2k

l=1
B
2k

´
=

P2k

l=1 f(B)

2k
. But the right hand side

of this expression is precisely f (B), and by Proposition 2,
P2k

l=1
B
2k
tends to

K (B), which is a convex problem. By continuity, then, f (B) = f (K (B)).
Thus, f (B) = (c,−c) + Uν (B). The result then concludes by continuity
and the fact that the compactly generated generalized problems are dense in
the space of all generalized problems.
Although in this context, additivity need not be implied by mixture lin-

earity and f (K ({0})) = 0, it is clear that adding the requirement that
f (K ({0})) = 0 to the preceding Theorem provides a characterization of the
multi-utilitarian rules in this nonconvex environment.

Corollary 4: A rule f defined on BG satisfies efficiency, translation invari-
ance, monotonicity, continuity, mixture linearity, and selection of sin-
gletons if and only if it is a multi-utilitarian rule.
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